Hypotheses in the context of "Empirical method"

⭐ In the context of empirical research, hypotheses are most accurately considered as…

Ad spacer

⭐ Core Definition: Hypotheses

A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or thought. If a hypothesis is repeatedly independently demonstrated by experiment to be true, it becomes a scientific theory. In colloquial usage, the words "hypothesis" and "theory" are often used interchangeably, but this is incorrect in the context of science.

A working hypothesis is a provisionally-accepted hypothesis used for the purpose of pursuing further progress in research. Working hypotheses are frequently discarded, and often proposed with knowledge (and warning) that they are incomplete and thus false, with the intent of moving research in at least somewhat the right direction, especially when scientists are stuck on an issue and brainstorming ideas.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Hypotheses in the context of Empirical method

Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence (the record of one's direct observations or experiences) can be analyzed quantitatively or qualitatively. Quantifying the evidence or making sense of it in qualitative form, a researcher can answer empirical questions, which should be clearly defined and answerable with the evidence collected (usually called data). Research design varies by field and by the question being investigated. Many researchers combine qualitative and quantitative forms of analysis to better answer questions that cannot be studied in laboratory settings, particularly in the social sciences and in education.

In some fields, quantitative research may begin with a research question (e.g., "Does listening to vocal music during the learning of a word list have an effect on later memory for these words?") which is tested through experimentation. Usually, the researcher has a certain theory regarding the topic under investigation. Based on this theory, statements or hypotheses will be proposed (e.g., "Listening to vocal music has a negative effect on learning a word list."). From these hypotheses, predictions about specific events are derived (e.g., "People who study a word list while listening to vocal music will remember fewer words on a later memory test than people who study a word list in silence."). These predictions can then be tested with a suitable experiment. Depending on the outcomes of the experiment, the theory on which the hypotheses and predictions were based will be supported or not, or may need to be modified and then subjected to further testing.

↓ Explore More Topics
In this Dossier

Hypotheses in the context of Science

Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into two – or three – major branches: the natural sciences, which study the physical world, and the social sciences, which study individuals and societies. While referred to as the formal sciences, the study of logic, mathematics, and theoretical computer science are typically regarded as separate because they rely on deductive reasoning instead of the scientific method as their main methodology. Meanwhile, applied sciences are disciplines that use scientific knowledge for practical purposes, such as engineering and medicine.

The history of science spans the majority of the historical record, with the earliest identifiable predecessors to modern science dating to the Bronze Age in Egypt and Mesopotamia (c. 3000–1200 BCE). Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity and later medieval scholarship, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes; while further advancements, including the introduction of the Hindu–Arabic numeral system, were made during the Golden Age of India and Islamic Golden Age. The recovery and assimilation of Greek works and Islamic inquiries into Western Europe during the Renaissance revived natural philosophy, which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in the acquisition of knowledge, and in the 19th century, many of the institutional and professional features of science began to take shape, along with the changing of "natural philosophy" to "natural science".

↑ Return to Menu

Hypotheses in the context of Problem of induction

The problem of induction is a philosophical problem that questions the rationality of predictions about unobserved things based on previous observations. These inferences from the observed to the unobserved are known as "inductive inferences". David Hume, who first formulated the problem in 1739, argued that there is no non-circular way to justify inductive inferences, while he acknowledged that everyone does and must make such inferences.

The traditional inductivist view is that all claimed empirical laws, either in everyday life or through the scientific method, can be justified through some form of reasoning. The problem is that many philosophers tried to find such a justification but their proposals were not accepted by others. Identifying the inductivist view as the scientific view, C. D. Broad once said that induction is "the glory of science and the scandal of philosophy". In contrast, Karl Popper's critical rationalism claimed that inductive justifications are never used in science and proposed instead that science is based on the procedure of conjecturing hypotheses, deductively calculating consequences, and then empirically attempting to falsify them.

↑ Return to Menu

Hypotheses in the context of Vitalist

Vitalism is an idea that living organisms are differentiated from the non-living by the presence of forces, properties or powers including those which may not be physical or chemical. Varied forms of vitalist theories were held in former times and they are now considered pseudoscientific concepts. Where vitalism explicitly invokes a vital principle, that element is often referred to as the "vital spark", "energy", "élan vital" (coined by vitalist Henri Bergson), "vital force", or "vis vitalis", which some equate with the soul. In the 18th and 19th centuries, vitalism was discussed among biologists, between those belonging to the mechanistic school who felt that the known mechanics of physics would eventually explain the difference between life and non-life and vitalists who argued that the processes of life could not be reduced to a mechanistic process. Vitalist biologists such as Johannes Reinke proposed testable hypotheses meant to show inadequacies with mechanistic explanations, but their experiments failed to provide support for vitalism. Biologists now consider vitalism in this sense to have been refuted by empirical evidence, and hence regard it either as a superseded scientific theory, or as a pseudoscience since the mid-20th century.

Vitalism has a long history in medical philosophies: many traditional healing practices posited that disease results from some imbalance in vital forces.

↑ Return to Menu