Hyperparasite in the context of "Rhizocephala"

Play Trivia Questions online!

or

Skip to study material about Hyperparasite in the context of "Rhizocephala"

Ad spacer

⭐ Core Definition: Hyperparasite

A hyperparasite, also known as a metaparasite, is a parasite whose host is itself a parasite, often specifically a parasitoid. Hyperparasites are found mainly among the wasp-waisted Apocrita within the Hymenoptera, and in two other insect orders, the Diptera (true flies) and Coleoptera (beetles). Seventeen families in Hymenoptera and a few species of Diptera and Coleoptera are hyperparasitic. Hyperparasitism developed from primary parasitism, which evolved in the Jurassic period in the Hymenoptera. Hyperparasitism intrigues entomologists because of its multidisciplinary relationship to evolution, ecology, behavior, biological control, taxonomy, and mathematical models.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Hyperparasite in the context of Rhizocephala

Rhizocephala are derived barnacles that are parasitic castrators. Their hosts are mostly decapod crustaceans, but include Peracarida, mantis shrimps and thoracican barnacles. Their habitats range from the deep ocean to freshwater. Together with their sister groups Thoracica and Acrothoracica, they make up the subclass Cirripedia. Their body plan is uniquely reduced in an extreme adaptation to their parasitic lifestyle, and makes their relationship to other barnacles unrecognisable in the adult form. They also exhibit the most extreme sexual dimorphism of all known animals. The females are parasites who inject themselves into a host and take over their bodies through a network of filaments, while the males are hyperparasites who inject themselves into a settled female and cease to exist as independent organisms through the degeneration of all tissues except the ones responsible for spermatogenesis. The name Rhizocephala derives from the Ancient Greek roots ῥίζα (rhiza, "root") and κεφαλή (kephalē, "head"), describing the adult female, which mostly consists of a network of thread-like extensions penetrating the body of the host.

↓ Explore More Topics
In this Dossier

Hyperparasite in the context of Yersinia pestis

Yersinia pestis (Y. pestis; formerly Pasteurella pestis) is a gram-negative, non-motile, coccobacillus bacterium without spores. It is related to pathogens Yersinia enterocolitica, and Yersinia pseudotuberculosis, from which it evolved. Yersinia pestis is responsible for the disease plague, which caused the Plague of Justinian and the Black Death, one of the deadliest pandemics in recorded history. Plague takes three main forms: pneumonic, septicemic, and bubonic. Y. pestis is a facultative anaerobic parasitic bacterium that can infect humans primarily via its host the Oriental rat flea (Xenopsylla cheopis), but also through aerosols and airborne droplets for its pneumonic form. As a parasite of its host, the rat flea, which is also a parasite of rats, Y. pestis is a hyperparasite.

Y. pestis was discovered in 1894 by Alexandre Yersin, a Swiss/French physician and bacteriologist from the Pasteur Institute, during an epidemic of the plague in Hong Kong. Yersin was a member of the Pasteur school of thought. Kitasato Shibasaburō, a Japanese bacteriologist who practised Koch's methodology, was also engaged at the time in finding the causative agent of the plague. However, Yersin actually linked plague with a bacillus, initially named Pasteurella pestis; it was renamed Yersinia pestis in 1944.

↑ Return to Menu

Hyperparasite in the context of Apocrita

Apocrita is a suborder of insects in the order Hymenoptera. It includes wasps, bees, and ants, and consists of many families. It contains the most advanced hymenopterans and is distinguished from Symphyta by the narrow "waist" (petiole) formed between the first two segments of the actual abdomen; the first abdominal segment is fused to the thorax, and is called the propodeum. Therefore, it is general practice, when discussing the body of an apocritan in a technical sense, to refer to the mesosoma and metasoma (or gaster) rather than the "thorax" and "abdomen", respectively. The evolution of a constricted waist was an important adaption for the parasitoid lifestyle of the ancestral apocritan, allowing more maneuverability of the female's ovipositor. The ovipositor either extends freely or is retracted, and may be developed into a stinger for both defense and paralyzing prey. Larvae are legless and blind, and either feed inside a host (plant or animal) or in a nest cell provisioned by their mothers.

Apocrita has historically been split into two groups, Parasitica and Aculeata. Aculeata is a clade whose name is in standard use. "Parasitica" is not a clade, as it is paraphyletic: the clade would contain the Aculeata. "Parasitica" is therefore a rankless grouping in many present classifications, if it appears at all.Parasitica comprises the majority of hymenopteran insects, its members living as parasitoids. Most species are small, with the ovipositor adapted for piercing. In some hosts, the parasitoids induce metamorphosis prematurely, and in others it is prolonged. There are even species that are hyperparasites, or parasitoids on other parasitoids. The Parasitica lay their eggs inside or on another insect (egg, larva or pupa) and their larvae grow and develop within or on that host. The host is nearly always killed. Many parasitic hymenopterans are used as biological control agents to control pests, such as caterpillars, true bugs and hoppers, flies, and weevils.

↑ Return to Menu