Hyperbolic rotation in the context of "Hyperbolic functions"

Play Trivia Questions online!

or

Skip to study material about Hyperbolic rotation in the context of "Hyperbolic functions"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Hyperbolic rotation in the context of Hyperbolic functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and sinh(t) respectively.

Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry. They are used to express Lorentz boosts as hyperbolic rotations in special relativity. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, and fluid dynamics.

↓ Explore More Topics
In this Dossier

Hyperbolic rotation in the context of Extra dimensions

In physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are:

↑ Return to Menu