Hydrophone in the context of Field recordings


Hydrophone in the context of Field recordings

Hydrophone Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Hydrophone in the context of "Field recordings"


⭐ Core Definition: Hydrophone

A hydrophone (Ancient Greek: ὕδωρ + φωνή, lit.'water + sound') is a microphone designed for underwater use, for recording or listening to underwater sound. Most hydrophones contain a piezoelectric transducer that generates an electric potential when subjected to a pressure change, such as a sound wave.

A hydrophone can also detect airborne sounds but is insensitive of them because it is designed to match the acoustic impedance of water, a denser fluid than air. Sound travels 4.3 times faster in water than in air, and a sound wave in water exerts a pressure 60 times more than what is exerted by a wave of the same amplitude in air. Similarly, a standard microphone can be buried in the ground, or immersed in water if it is put in a waterproof container but will give poor performance because of the similarly-bad acoustic impedance match.

↓ Menu
HINT:

👉 Hydrophone in the context of Field recordings

Field recording is the production of audio recordings outside recording studios, and the term applies to recordings of both natural and human-produced sounds. It can also include the recording of electromagnetic fields or vibrations using different microphones like a passive magnetic antenna for electromagnetic recordings or contact microphones, or underwater field recordings made with hydrophones to capture the sounds and/or movements of whales, or other sealife. These recordings are often regarded as being very useful for sound designers and foley artists.

Field recording of natural sounds, also called phonography (a term chosen because of the similarity of the practice to photography), was originally developed as a documentary adjunct to research work in the field, and Foley work for film. With the introduction of high-quality, portable recording equipment, it has subsequently become an evocative artform in itself. In the 1970s, both processed and natural phonographic recordings, (pioneered by Irv Teibel's Environments series), became popular.

↓ Explore More Topics
In this Dossier

Hydrophone in the context of Seismic wave

A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake (or generally, a quake), volcanic eruption, magma movement, a large landslide and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones (in water), or accelerometers. Seismic waves are distinguished from seismic noise (ambient vibration), which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.

The propagation velocity of a seismic wave depends on density and elasticity of the medium as well as the type of wave. Velocity tends to increase with depth through Earth's crust and mantle, but drops sharply going from the mantle to Earth's outer core.

View the full Wikipedia page for Seismic wave
↑ Return to Menu

Hydrophone in the context of Sound pressure

Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).

View the full Wikipedia page for Sound pressure
↑ Return to Menu

Hydrophone in the context of Seismic source

A seismic source is a device that generates controlled seismic energy used to perform both reflection and refraction seismic surveys. A seismic source can be simple, such as dynamite, or it can use more sophisticated technology, such as a specialized air gun. Seismic sources can provide single pulses or continuous sweeps of energy, generating seismic waves, which travel through a medium such as water or layers of rocks. Some of the waves then reflect and refract and are recorded by receivers, such as geophones or hydrophones.

Seismic sources may be used to investigate shallow subsoil structure, for engineering site characterization, or to study deeper structures, either in the search for petroleum and mineral deposits, or to map subsurface faults or for other scientific investigations. The returning signals from the sources are detected by seismic sensors (geophones or hydrophones) in known locations relative to the position of the source. The recorded signals are then subjected to specialist processing and interpretation to yield comprehensible information about the subsurface.

View the full Wikipedia page for Seismic source
↑ Return to Menu