Hydron (chemistry) in the context of Strong acids


Hydron (chemistry) in the context of Strong acids

Hydron (chemistry) Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Hydron (chemistry) in the context of "Strong acids"


⭐ Core Definition: Hydron (chemistry)

In chemistry, the hydron, informally called proton, is the cationic form of atomic hydrogen, represented with the symbol H. The general term "hydron", endorsed by IUPAC, encompasses cations of hydrogen regardless of isotope: thus it refers collectively to protons (H) for the protium isotope, deuterons (H or D) for the deuterium isotope, and tritons (H or T) for the tritium isotope.

Unlike most other ions, the hydron consists only of a bare atomic nucleus. The negatively charged counterpart of the hydron is the hydride anion, H
.

↓ Menu
HINT:

In this Dossier

Hydron (chemistry) in the context of Protons

A proton is a stable subatomic particle, symbol p, H, or H with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one dalton, are jointly referred to as nucleons (particles present in atomic nuclei).

One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element.

View the full Wikipedia page for Protons
↑ Return to Menu

Hydron (chemistry) in the context of Acid strength

Acid strength is the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a proton, H, and an anion, A. The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.

Examples of strong acids are hydrochloric acid (HCl), perchloric acid (HClO4), nitric acid (HNO3) and sulfuric acid (H2SO4).

View the full Wikipedia page for Acid strength
↑ Return to Menu

Hydron (chemistry) in the context of ATP synthase

ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is:

  • ADP + Pi + 2Hout ⇌ ATP + H2O + 2Hin

ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP. This electrochemical gradient is generated by the electron transport chain and allows cells to store energy in ATP for later use. In prokaryotic cells ATP synthase lies across the plasma membrane, while in eukaryotic cells it lies across the inner mitochondrial membrane. Organisms capable of photosynthesis also have ATP synthase across the thylakoid membrane, which in plants is located in the chloroplast and in cyanobacteria is located in the cytoplasm.

View the full Wikipedia page for ATP synthase
↑ Return to Menu

Hydron (chemistry) in the context of Base (chemistry)

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

In 1884, Svante Arrhenius proposed that a base is a substance which dissociates in aqueous solution to form hydroxide ions OH. These ions can react with hydrogen ions (H according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction. A base was therefore a metal hydroxide such as NaOH or Ca(OH)2. Such aqueous hydroxide solutions were also described by certain characteristic properties. They are slippery to the touch, can taste bitter and change the color of pH indicators (e.g., turn red litmus paper blue).

View the full Wikipedia page for Base (chemistry)
↑ Return to Menu

Hydron (chemistry) in the context of Self-ionization of water

The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H2O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH. The hydrogen nucleus, H, immediately protonates another water molecule to form a hydronium cation, H3O. It is an example of autoprotolysis, and exemplifies the amphoteric nature of water.

View the full Wikipedia page for Self-ionization of water
↑ Return to Menu

Hydron (chemistry) in the context of Deprotonation

Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H) from a Brønsted–Lowry acid in an acid–base reaction. The species formed is the conjugate base of that acid. The complementary process, when a proton is added (transferred) to a Brønsted–Lowry base, is protonation (or hydronation). The species formed is the conjugate acid of that base.

A species that can either accept or donate a proton is referred to as amphiprotic. An example is the H2O (water) molecule, which can gain a proton to form the hydronium ion, H3O, or lose a proton, leaving the hydroxide ion, OH.

View the full Wikipedia page for Deprotonation
↑ Return to Menu

Hydron (chemistry) in the context of Conjugate acid

A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton (H) to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reverse reaction. On the other hand, a conjugate base is what remains after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a substance formed by the removal of a proton from an acid, as it can gain a hydrogen ion in the reverse reaction. Because some acids can give multiple protons, the conjugate base of an acid may itself be acidic.

In summary, this can be represented as the following chemical reaction:

View the full Wikipedia page for Conjugate acid
↑ Return to Menu

Hydron (chemistry) in the context of Protonation

In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), usually denoted by H, to an atom, molecule, or ion, forming a conjugate acid. (The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include

Protonation is a fundamental chemical reaction and is a step in many stoichiometric and catalytic processes. Some ions and molecules can undergo more than one protonation and are labeled polybasic, which is true of many biological macromolecules. Protonation and deprotonation (removal of a proton) occur in most acid–base reactions; they are the core of most acid–base reaction theories. A Brønsted–Lowry acid is defined as a chemical substance that protonates another substance. Upon protonating a substrate, the mass and the charge of the species each increase by one unit, making it an essential step in certain analytical procedures such as electrospray mass spectrometry. Protonating or deprotonating a molecule or ion can change many other chemical properties, not just the charge and mass, for example solubility, hydrophilicity, reduction potential or oxidation potential, and optical properties can change.

View the full Wikipedia page for Protonation
↑ Return to Menu

Hydron (chemistry) in the context of Birch reduction

The Birch reduction or Metal-Ammonia reduction is an organic reaction that is used to convert arenes to 1,4-cyclohexadienes. The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent (traditionally liquid ammonia) with an alkali metal (traditionally sodium) and a proton source (traditionally an alcohol). Unlike catalytic hydrogenation, Birch reduction does not reduce the aromatic ring all the way to a cyclohexane.

Another example is the reduction of naphthalene in ammonia and diethyl ether:

View the full Wikipedia page for Birch reduction
↑ Return to Menu

Hydron (chemistry) in the context of Acid dissociation constant

In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

known as dissociation in the context of acid–base reactions. The chemical species HA is an acid that dissociates into A, called the conjugate base of the acid, and a hydrogen ion, H. The system is said to be in equilibrium when the concentrations of its components do not change over time, because both forward and backward reactions are occurring at the same rate.

View the full Wikipedia page for Acid dissociation constant
↑ Return to Menu

Hydron (chemistry) in the context of Oxyacid

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H cation and the anion of the acid.

View the full Wikipedia page for Oxyacid
↑ Return to Menu

Hydron (chemistry) in the context of Proton conductor

A proton conductor is an electrolyte, typically a solid electrolyte, in which H are the primary charge carriers.

View the full Wikipedia page for Proton conductor
↑ Return to Menu