Hydrogen peroxide in the context of "Peroxisome"

Play Trivia Questions online!

or

Skip to study material about Hydrogen peroxide in the context of "Peroxisome"

Ad spacer

⭐ Core Definition: Hydrogen peroxide

Hydrogen peroxide is a chemical compound with the formula H2O2. In its pure form, it is a very pale blue liquid; However at lower concentrations, it appears colorless due to the faintness of the blue coloration. The molecule hydrogen peroxide is asymmetrical and highly polarized. Its strong tendency to form hydrogen bond networks results in greater viscosity compared to water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use. Concentrated hydrogen peroxide, or "high-test peroxide", decomposes explosively when heated and has been used as both a monopropellant and an oxidizer in rocketry.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Hydrogen peroxide in the context of Peroxisome

A peroxisome (/pəˈrɒksɪˌsm/) is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen peroxide (H2O2) is then formed. Peroxisomes owe their name to hydrogen peroxide-generating and scavenging activities. They perform key roles in lipid metabolism and the reduction of reactive oxygen species.

Peroxisomes are involved in the catabolism of very long chain fatty acids, branched chain fatty acids, bile acid intermediates (in the liver), D-amino acids, and polyamines. Peroxisomes also play a role in the biosynthesis of plasmalogens: ether phospholipids critical for the normal function of mammalian brains and lungs. Peroxisomes contain approximately 10% of the total activity of two enzymes (Glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase) in the pentose phosphate pathway, which is important for energy metabolism. It is debated whether peroxisomes are involved in isoprenoid and cholesterol synthesis in animals. Other peroxisomal functions include the glyoxylate cycle in germinating seeds ("glyoxysomes"), photorespiration in leaves, glycolysis in trypanosomes ("glycosomes"), and methanol and amine oxidation and assimilation in some yeasts.

↓ Explore More Topics
In this Dossier

Hydrogen peroxide in the context of Oxidizer

In one sense, an oxidizing agent is a chemical species that undergoes a chemical reaction in which it gains one or more electrons. In that sense, it is one component in an oxidation–reduction (redox) reaction. In the second sense, an oxidizing agent is a chemical species that transfers electronegative atoms, usually oxygen, to a substrate. Combustion, many explosives, and organic redox reactions involve atom-transfer reactions.

↑ Return to Menu

Hydrogen peroxide in the context of Antiseptic

An antiseptic (Greek: ἀντί, romanizedanti, lit.'against' and σηπτικός, sēptikos, 'putrefactive') is an antimicrobial substance or compound that is applied to living tissue to reduce the possibility of sepsis, infection, or putrefaction. Antiseptics are generally distinguished from antibiotics by the latter's ability to safely destroy bacteria within the body, and from disinfectants, which destroy microorganisms found on non-living objects.

Antibacterials include antiseptics that have the proven ability to act against bacteria. Microbicides which destroy virus particles are called viricides or antivirals. Antifungals, also known as antimycotics, are pharmaceutical fungicides used to treat and prevent mycosis (fungal infection).

↑ Return to Menu

Hydrogen peroxide in the context of Hydroxyl radical

The hydroxyl radical, denoted as •OH or HO•, is the neutral form of the hydroxide ion (OH). As a free radical, it is highly reactive and consequently short-lived, making it a pivotal species in radical chemistry.

In nature, hydroxyl radicals are most notably produced from the decomposition of hydroperoxides (ROOH) or, in atmospheric chemistry, by the reaction of excited atomic oxygen with water. They are also significant in radiation chemistry, where their formation can lead to hydrogen peroxide and oxygen, which in turn can accelerate corrosion and stress corrosion cracking in environments such as nuclear reactor coolant systems. Other important formation pathways include the UV-light dissociation of hydrogen peroxide (H2O2) and the Fenton reaction, where trace amounts of reduced transition metals catalyze the breakdown of peroxide.

↑ Return to Menu

Hydrogen peroxide in the context of Oxidative stress

Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components of the cell, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. Base damage is mostly indirect and caused by the reactive oxygen species generated, e.g., O
2
(superoxide radical), OH (hydroxyl radical) and H2O2 (hydrogen peroxide). Further, some reactive oxidative species act as cellular messengers in redox signaling. Thus, oxidative stress can cause disruptions in normal mechanisms of cellular signaling.

In humans, oxidative stress is thought to be involved in the development of cancer, Parkinson's disease, Lafora disease, Alzheimer's disease, atherosclerosis, heart failure, myocardial infarction, fragile X syndrome, sickle-cell disease, lichen planus, vitiligo, infection, chronic fatigue syndrome, and depression; however, reactive oxygen species can be beneficial, as they are used by the immune system as a way to attack and kill pathogens. Oxidative stress due to noise was estimated at cell level using model of growing lymphocytes. Exposure of sound with frequency 1 KHz and intensity 110 dBA for 4 hours and eight hours per day may induce oxidative stress in growing lymphocytes causing the difference in viable cell count. However the catalase activity depends on duration of exposure. In case of noise exposure of 8 hours per day, it declines significantly as compared to noise exposure of 4 hours per day.

↑ Return to Menu

Hydrogen peroxide in the context of Oxygen cycle

The oxygen cycle refers to the various movements of oxygen through the Earth's atmosphere (air), biosphere (flora and fauna), hydrosphere (water bodies and glaciers) and the lithosphere (the Earth's crust). The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. It is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle. Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O2 production) or sink (O2 consumption).

Oxygen is one of the most common elements on Earth and represents a large portion of each main reservoir. By far the largest reservoir of Earth's oxygen is within the silicate and oxide minerals of the crust and mantle (99.5% by weight). The Earth's atmosphere, hydrosphere, and biosphere together hold less than 0.05% of the Earth's total mass of oxygen. Besides O2, additional oxygen atoms are present in various forms spread throughout the surface reservoirs in the molecules of biomass, H2O, CO2, HNO3, NO, NO2, CO, H2O2, O3, SO2, H2SO4, MgO, CaO, Al2O3, SiO2, and PO3−4.

↑ Return to Menu

Hydrogen peroxide in the context of Piranha solution

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2). The resulting mixture is used to clean organic residues off substrates, for example silicon wafers. Because the mixture is a strong oxidizing agent, it will decompose most organic matter, and it will also hydroxylate most surfaces (by adding –OH groups), making them highly hydrophilic (water-compatible). This means the solution can also easily dissolve fabric and skin, potentially causing severe damage and chemical burns in case of inadvertent contact. It is named after the piranha fish due to its tendency to rapidly dissolve and 'consume' organic materials through vigorous chemical reactions.

↑ Return to Menu

Hydrogen peroxide in the context of Advanced oxidation process

Advanced oxidation processes (AOPs), in a broad sense, are a set of chemical treatment procedures designed to remove organic (and sometimes inorganic) materials in water and wastewater by oxidation through reactions with hydroxyl radicals (·OH). In practice within wastewater treatment, this term usually refers more specifically to a subset of such chemical processes that employ ozone (O3), hydrogen peroxide (H2O2) and UV light or a combination of the few processes. Common AOP configurations often include Fenton and photo-Fenton systems, in addition to ozone/UV, TiO2/UV photocatalysis, and Electro-Fenton systems.

↑ Return to Menu