Hydrogen bomb in the context of "NSC 68"

Play Trivia Questions online!

or

Skip to study material about Hydrogen bomb in the context of "NSC 68"

Ad spacer

⭐ Core Definition: Hydrogen bomb

A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon, utilizing nuclear fusion. The most destructive weapons ever created, their yields typically exceed first-generation nuclear weapons by twenty times, with far lower mass and volume requirements. Characteristics of fusion reactions can make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material. Its multi-stage design is distinct from the usage of fusion in simpler boosted fission weapons. The first full-scale thermonuclear test (Ivy Mike) was carried out by the United States in 1952, and the concept has since been employed by at least the five NPT-recognized nuclear-weapon states: the United States, Russia, the United Kingdom, China, and France.

The design of all thermonuclear weapons is believed to be the Teller–Ulam configuration. This relies on radiation implosion, in which X-rays from detonation of the primary stage, a fission bomb, are channelled to compress a separate fusion secondary stage containing thermonuclear fuel, primarily lithium-6 deuteride. During detonation, neutrons convert lithium-6 to helium-4 plus tritium. The heavy isotopes of hydrogen, deuterium and tritium, then undergo a reaction that releases energy and neutrons. For this reason, thermonuclear weapons are often colloquially called hydrogen bombs or H-bombs.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Hydrogen bomb in the context of NSC 68

United States Objectives and Programs for National Security, better known as NSC 68, was a 66-page top secret U.S. National Security Council (NSC) policy paper drafted by the Department of State and Department of Defense and presented to President Harry S. Truman on 7 April 1950. It was one of the most important American policy statements of the Cold War. In the words of scholar Ernest R. May, NSC 68 "provided the blueprint for the militarization of the Cold War from 1950 to the collapse of the Soviet Union at the beginning of the 1990s." NSC 68 and its subsequent amplifications advocated a large expansion in the military budget of the United States, the development of a hydrogen bomb, and increased military aid to allies of the United States. It made the rollback of global Communist expansion a high priority and rejected the alternative policies of détente and containment of the Soviet Union.

↓ Explore More Topics
In this Dossier

Hydrogen bomb in the context of Thor IRBM

The PGM-17A Thor was the first operative ballistic missile of the United States Air Force (USAF). It was named after the Norse god of thunder. It was deployed in the United Kingdom between 1959 and September 1963 as an intermediate-range ballistic missile (IRBM) with thermonuclear warheads. Thor was 65 feet (20 m) in height and 8 feet (2.4 m) in diameter.

The first generation of Thor missiles were rushed into service, and design mistakes resulted in a 24% launch failure rate. The competing PGM-19 Jupiter missile saw more use, but both were quickly eclipsed by the Air Force's long range ICBM program, which could be fired from U.S. soil. By 1959, with the Atlas missile well on its way to operational status, both Thor and Jupiter programs became obsolete as delivery vehicles, yet continued to be built and deployed until 1963 for political reasons and to maintain aerospace industry employment.

↑ Return to Menu

Hydrogen bomb in the context of History of nuclear weapons

Building on major scientific breakthroughs made during the 1930s, the United Kingdom began the world's first nuclear weapons research project, codenamed Tube Alloys, in 1941, during World War II. The United States, in collaboration with the United Kingdom, initiated the Manhattan Project the following year to build a weapon using nuclear fission. The project also involved Canada. In August 1945, the atomic bombings of Hiroshima and Nagasaki were conducted by the United States, with British consent, against Japan at the close of that war, standing to date as the only use of nuclear weapons in hostilities.

The Soviet Union started development shortly after with their own atomic bomb project, and not long after, both countries were developing even more powerful fusion weapons known as hydrogen bombs. Britain and France built their own systems in the 1950s, and the number of states with nuclear capabilities has gradually grown larger in the decades since.

↑ Return to Menu

Hydrogen bomb in the context of Boosted fission weapon

A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion fuel to increase the rate, and thus yield, of a fission reaction. The fast fusion neutrons released by the fusion reactions add to the fast neutrons released due to fission, allowing for more neutron-induced fission reactions to take place. The rate of fission is thereby greatly increased such that much more of the fissile material undergoes fission before the core explosively disassembles. The fusion process itself adds only a small amount of energy to the process, perhaps 1%. The fuel is commonly a 50-50 deuterium-tritium gas mixture, although lithium-6-deuteride has also been tested.

The alternative meaning is an obsolete type of single-stage nuclear bomb that uses thermonuclear fusion on a large scale to create fast neutrons that can cause fission in depleted uranium, but which is not a two-stage hydrogen bomb. This type of bomb was referred to by Edward Teller as "Alarm Clock", and by Andrei Sakharov as "Sloika" or "Layer Cake" (Teller and Sakharov developed the idea independently, as far as is known).

↑ Return to Menu

Hydrogen bomb in the context of Pure fusion weapon

A pure fusion weapon is a hypothetical hydrogen bomb design that does not need a fission "primary" explosive to ignite the fusion of deuterium and tritium, two heavy isotopes of hydrogen used in fission-fusion thermonuclear weapons. Such a weapon would require no fissile material and would therefore be much easier to develop in secret than existing weapons. Separating weapons-grade uranium (U-235) or breeding plutonium (Pu-239) requires a substantial and difficult-to-conceal industrial investment, and blocking the sale and transfer of the needed machinery has been the primary mechanism to control nuclear proliferation to date.

↑ Return to Menu

Hydrogen bomb in the context of Fusion energy gain factor

A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in a steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or in some sources, scientific breakeven.

The energy given off by the fusion reactions may be captured within the fuel, leading to self-heating. Most fusion reactions release at least some of their energy in a form that cannot be captured within the plasma, so a system at Q = 1 will cool without external heating. With typical fuels, self-heating in fusion reactors is not expected to match the external sources until at least Q ≈ 5. If Q increases past this point, increasing self-heating eventually removes the need for external heating. At this point the reaction becomes self-sustaining, a condition called ignition, and is generally regarded as highly desirable for practical reactor designs. Ignition corresponds to infinite Q.

↑ Return to Menu

Hydrogen bomb in the context of UGM-27 Polaris

The UGM-27 Polaris missile was a two-stage solid-fueled nuclear-armed submarine-launched ballistic missile (SLBM). As the United States Navy's first SLBM, it served from 1961 to 1980.

In the mid-1950s the Navy was involved in the Jupiter missile project with the US Army, and had influenced the design by making it squat so it would fit in submarines. However, they had concerns about the use of liquid fuel rockets on board ships, and some consideration was given to a solid fuel version, Jupiter S. In 1956, during an anti-submarine study known as Project Nobska, Edward Teller suggested that very small hydrogen bomb warheads were possible. A crash program to develop a missile suitable for carrying such warheads began as Polaris, launching its first shot less than four years later, in February 1960.

↑ Return to Menu

Hydrogen bomb in the context of Edward Teller

Edward Teller (Hungarian: Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist and chemical engineer who is known colloquially as "the father of the hydrogen bomb" and one of the creators of the Teller–Ulam design inspired by Stanisław Ulam. He had a volatile personality, and was "driven by his megaton ambitions, had a messianic complex, and displayed autocratic behavior." He devised a thermonuclear Alarm Clock bomb with a yield of 1000 MT (1 GT of TNT) and proposed delivering it by boat or submarine to incinerate a continent.

Born in Austria-Hungary in 1908, Teller emigrated to the US in the 1930s, one of the many so-called "Martians", a group of Hungarian scientist émigrés. He made numerous contributions to nuclear and molecular physics, spectroscopy, and surface physics. His extension of Enrico Fermi's theory of beta decay, in the form of Gamow–Teller transitions, provided an important stepping stone in its application, while the Jahn–Teller effect and Brunauer–Emmett–Teller (BET) theory have retained their original formulation and are mainstays in physics and chemistry. Teller analyzed his problems using basic principles of physics and often discussed with his cohorts to make headway through difficult problems. This was seen when he worked with Stanislaw Ulam to get a workable thermonuclear fusion bomb design, but later temperamentally dismissed Ulam's aid. Herbert York stated that Teller utilized Ulam's general idea of compressive heating to start thermonuclear fusion to generate his own sketch of a workable "Super" bomb. Before Ulam's idea, Teller's classical Super was essentially a system for heating uncompressed liquid deuterium to the point, Teller hoped, that it would sustain thermonuclear burning. It was, in essence, a simple idea from physical principles, which Teller pursued with a ferocious tenacity, even if he was wrong and shown that it would not work. To get support from Washington for his Super weapon project, Teller proposed a thermonuclear radiation implosion experiment as the "George" shot of Operation Greenhouse.

↑ Return to Menu