Host–pathogen interaction in the context of "Disease ecology"

Play Trivia Questions online!

or

Skip to study material about Host–pathogen interaction in the context of "Disease ecology"




⭐ Core Definition: Host–pathogen interaction

The host-pathogen interaction is defined as how microbes or viruses sustain themselves within host organisms on a molecular, cellular, organismal or population level. This term is most commonly used to refer to disease-causing microorganisms although they may not cause illness in all hosts. Because of this, the definition has been expanded to how known pathogens survive within their host, whether they cause disease or not.

On the molecular and cellular level, microbes can infect the host and divide rapidly, causing disease by being there and causing a homeostatic imbalance in the body, or by secreting toxins which cause symptoms to appear. Viruses can also infect the host with virulent DNA, which can affect normal cell processes (transcription, translation, etc.), protein folding, or evading the immune response.

↓ Menu

👉 Host–pathogen interaction in the context of Disease ecology

Disease ecology is a sub-discipline of ecology concerned with the mechanisms, patterns, and effects of host-pathogen interactions, particularly those of infectious diseases. For example, it examines how parasites spread through and influence wildlife populations and communities. By studying the flow of diseases within the natural environment, scientists seek to better understand how changes within our environment can shape how pathogens, and other diseases, travel. Therefore, diseases ecology seeks to understand the links between ecological interactions and disease evolution. New emerging and re-emerging infectious diseases (infecting both wildlife and humans) are increasing at unprecedented rates which can have lasting impacts on public health, ecosystem health, and biodiversity.

↓ Explore More Topics
In this Dossier

Host–pathogen interaction in the context of Exotoxin

An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, similar to endotoxins, may be released during lysis of the cell. Gram negative pathogens may secrete outer membrane vesicles containing lipopolysaccharide endotoxin and some virulence proteins in the bounding membrane along with some other toxins as intra-vesicular contents, thus adding a previously unforeseen dimension to the well-known eukaryote process of membrane vesicle trafficking, which is quite active at the host–pathogen interface.

They may exert their effect locally or produce systemic effects. Well-known exotoxins include: botulinum toxin produced by Clostridium botulinum; Corynebacterium diphtheriae toxin, produced during life-threatening symptoms of diphtheria; tetanospasmin produced by Clostridium tetani. The toxic properties of most exotoxins can be inactivated by heat or chemical treatment to produce a toxoid. These retain their antigenic specificity and can be used to produce antitoxins and, in the case of diphtheria and tetanus toxoids, are used as vaccines.

↑ Return to Menu