Honest signal in the context of "Advertising in biology"

Play Trivia Questions online!

or

Skip to study material about Honest signal in the context of "Advertising in biology"

Ad spacer

⭐ Core Definition: Honest signal

Within evolutionary biology, signalling theory is a body of theoretical work examining communication between individuals, both within species and across species. The central question is how organisms with conflicting interests, such as in sexual selection, are expected to provide honest signals rather than deceive or cheat, given that the passing on of pleiotropic traits is subject to natural selection, which aims to minimize associated costs without assuming any conscious intent. Mathematical models describe how signalling can contribute to an evolutionarily stable strategy.

Signals are given in contexts such as mate selection by females, which subjects the advertising males' signals to selective pressure. Signals thus evolve because they modify the behaviour of the receiver to benefit the signaller. Signals may be honest, conveying information which usefully increases the fitness of the receiver, or dishonest. An individual can cheat by giving a dishonest signal, which might briefly benefit that signaller, at the risk of undermining the signalling system for the whole population.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Honest signal in the context of Mimicry

In evolutionary biology, mimicry is the evolved resemblance of an organism to something else, often another organism of a different species. Mimicry may evolve between different species, or between individuals of the same species. In the simplest case, as in Batesian mimicry, a mimic resembles a model, so as to deceive a dupe, all three being of different species. A Batesian mimic, such as a hoverfly, is harmless, while its model, such as a wasp, is harmful, and is avoided by the dupe, such as an insect-eating bird. Birds hunt by sight, so the mimicry in that case is visual, but in other cases mimicry may make use of any of the senses. Most types of mimicry, including Batesian, are deceptive, as the mimics are not harmful, but Müllerian mimicry, where different harmful species resemble each other, is honest, as when species of wasps and of bees all have genuinely aposematic warning coloration. More complex types may be bipolar, involving only two species, such as when the model and the dupe are the same; this occurs for example in aggressive mimicry, where a predator in wolf-in-sheep's-clothing style resembles its prey, allowing it to hunt undetected. Mimicry is not limited to animals; in Pouyannian mimicry, an orchid flower is the mimic, resembling a female bee, its model; the dupe is the male bee of the same species, which tries to copulate with the flower, enabling it to transfer pollen, so the mimicry is again bipolar. In automimicry, another bipolar system, model and mimic are the same, as when blue lycaenid butterflies have 'tails' or eyespots on their wings that mimic their own heads, misdirecting predator dupes to strike harmlessly. Many other types of mimicry exist.

↑ Return to Menu

Honest signal in the context of Müllerian mimicry

Müllerian mimicry is a type of biological mimicry in which two or more well-defended species, often foul-tasting and sharing common predators, converge in appearance to mimic each other's honest warning signals. This convergence of appearance achieves the following benefit to species that undergo it: predators need only experience a single unpleasant encounter with any member of a set of Müllerian mimics in order to thereafter avoid all creatures of similar appearance, whether or not it is the same species as the initial encounter. A ring of distinct species is thereby protected from their mutual predators by attempted predation upon any one of its members. The phenomenon is named after the German-Brazilian naturalist Fritz Müller, who proposed the concept in 1878, supporting his theory with a mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.

Müllerian mimicry was first identified in tropical butterflies that shared colourful wing patterns, but it is found in many groups of insects such as bumblebees, as well as in other animals such as poison frogs and coral snakes. The mimicry need not be restricted to that detected by vision—many snakes share auditory warning signals. Similarly, the defences involved are not limited to toxicity—anything that tends to deter predators, such as foul taste, sharp spines, or defensive behaviour can make a species unprofitable enough to predators to allow Müllerian mimicry to develop.

↑ Return to Menu

Honest signal in the context of Stotting

Stotting (also called pronking or pronging) is a behavior of quadrupeds, particularly gazelles, in which they spring into the air, lifting all four feet off the ground simultaneously. Usually, the legs are held in a relatively stiff position. Many explanations of stotting have been proposed, though for several of them there is little evidence either for or against.

The question of why prey animals stot has been investigated by evolutionary biologists including John Maynard Smith, C. D. Fitzgibbon, and Tim Caro; all of them conclude that the most likely explanation given the available evidence is that it is an honest signal to predators that the stotting animal would be difficult to catch. Such a signal is called "honest" as it is not deceptive in any way, and would benefit both predator and prey: the predator as it avoids a costly and unproductive chase, and the prey as it does not get chased.

↑ Return to Menu

Honest signal in the context of Firefly

The Lampyridae are a family of elateroid beetles with more than 2,400 described species, many of which are light-emitting. They are soft-bodied beetles commonly called fireflies, lightning bugs, or glowworms for their conspicuous production of light, mainly during twilight, to attract mates. The type species is Lampyris noctiluca, the common glow-worm of Europe. Light production in the Lampyridae is thought to have originated as a warning signal that the larvae were distasteful. This ability to create light was then co-opted as a mating signal and, in a further development, adult female fireflies of the genus Photuris mimic the flash pattern of the Photinus beetle to trap their males as prey.

Fireflies are found in temperate and tropical climates. Many live in marshes or in wet, wooded areas where their larvae have abundant sources of food. Although all fireflies nominally glow as larvae, only some species produce light in their adult stage, and the location of the light organ varies among species and between sexes of the same species. Fireflies have attracted human attention since classical antiquity; their presence has been taken to signify a wide variety of conditions in different cultures and is especially appreciated aesthetically in Japan, where parks are set aside for this specific purpose.

↑ Return to Menu

Honest signal in the context of Müllerian mimic

Müllerian mimicry is a type of biological mimicry in which two or more well-defended species, often foul-tasting and sharing common predators, converge in appearance to mimic each other's honest warning signals. This convergence of appearance achieves the following benefit to species that undergo it: predators need only experience a single unpleasant encounter with any member of a set of Müllerian mimics in order to thereafter avoid all creatures of similar appearance, whether or not it is the same species as the initial encounter. A ring of distinct species is thereby protected from their mutual predators by attempted predation upon any one of its members. The phenomenon is named after the German-Brazilian naturalist Fritz Müller, who proposed the concept in 1878, supporting his theory with a mathematical model of frequency-dependent selection, one of the first such models to be deployed in biology.

Müllerian mimicry was first identified in tropical butterflies that shared colourful wing patterns, but it is found in many groups of insects such as bumblebees, as well as in other animals such as poison frogs and coral snakes. The mimicry need not be restricted to that detected by vision—many snakes share auditory warning signals. Similarly, the defences involved are not limited to toxicity—anything that tends to deter predators, such as foul taste, sharp spines, or defensive behaviour can make a species unprofitable enough to predators to allow Müllerian mimicry to develop.

↑ Return to Menu