Higher-order logic in the context of "Predicate variable"

Play Trivia Questions online!

or

Skip to study material about Higher-order logic in the context of "Predicate variable"




⭐ Core Definition: Higher-order logic

In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic.

The term "higher-order logic" is commonly used to mean higher-order simple predicate logic. Here "simple" indicates that the underlying type theory is the theory of simple types, also called the simple theory of types. Leon Chwistek and Frank P. Ramsey proposed this as a simplification of ramified theory of types specified in the Principia Mathematica by Alfred North Whitehead and Bertrand Russell. Simple types is sometimes also meant to exclude polymorphic and dependent types.

↓ Menu

👉 Higher-order logic in the context of Predicate variable

In mathematical logic, a predicate variable is a predicate letter which functions as a "placeholder" for a relation (between terms), but which has not been specifically assigned any particular relation (or meaning). Common symbols for denoting predicate variables include capital roman letters such as , and , or lower case roman letters, e.g., . In first-order logic, they can be more properly called metalinguistic variables. In higher-order logic, predicate variables correspond to propositional variables which can stand for well-formed formulas of the same logic, and such variables can be quantified by means of (at least) second-order quantifiers.

↓ Explore More Topics
In this Dossier

Higher-order logic in the context of Quantification (logic)

In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier in the first-order formula expresses that everything in the domain satisfies the property denoted by . On the other hand, the existential quantifier in the formula expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable.

The most commonly used quantifiers are and . These quantifiers are standardly defined as duals; in classical logic: each can be defined in terms of the other using negation. They can also be used to define more complex quantifiers, as in the formula which expresses that nothing has the property . Other quantifiers are only definable within second-order logic or higher-order logics. Quantifiers have been generalized beginning with the work of Andrzej Mostowski and Per Lindström.

↑ Return to Menu

Higher-order logic in the context of Second-order logic

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified.
Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).

↑ Return to Menu

Higher-order logic in the context of Decidability (logic)

In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them.

↑ Return to Menu