High frequency in the context of National HRO


High frequency in the context of National HRO

High frequency Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about High frequency in the context of "National HRO"


⭐ Core Definition: High frequency

High frequency (HF) is the ITU designation for the band of radio waves with frequency between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred meters). Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies can be used for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

↓ Menu
HINT:

👉 High frequency in the context of National HRO

The original National HRO was a 9-tube HF (shortwave) general coverage communications receiver manufactured by the National Radio Company of Malden, Massachusetts, United States.

↓ Explore More Topics
In this Dossier

High frequency in the context of Citizens band

Citizens band radio (CB radio) is a land mobile radio system, a system allowing short-distance one-to-many bidirectional voice communication among individuals, using two-way radios operating near 27 MHz (or the 11-m wavelength) in the high frequency or shortwave band. Citizens band is distinct from other personal radio service allocations such as FRS, GMRS, MURS, UHF CB and the Amateur Radio Service ("ham" radio). In many countries, CB operation does not require a license and may be used for business or personal communications.

Like many other land mobile radio services, multiple radios in a local area share a single frequency channel, but only one can transmit at a time. The radio is normally in receive mode to receive transmissions of other radios on the channel; when users want to communicate they press a "push to talk" button on their radio, which turns on their transmitter. Users on a channel must take turns transmitting. In the US and Canada, and in the EU and the UK, transmitter power is limited to 4 watts when using AM and FM and 12 W PEP when using SSB. Illegal amplifiers to increase range are common.

View the full Wikipedia page for Citizens band
↑ Return to Menu

High frequency in the context of Very high frequency

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

VHF radio waves propagate mainly by line-of-sight, so they are blocked by hills and mountains, although due to refraction they can travel somewhat beyond the visual horizon out to about 160 km (100 miles). Common uses for radio waves in the VHF band are Digital Audio Broadcasting (DAB) and FM radio broadcasting, television broadcasting, two-way land mobile radio systems (emergency, business, private use and military), long range data communication up to several tens of kilometers with radio modems, amateur radio, and marine communications. Air traffic control communications and air navigation systems (e.g. VOR and ILS) work at distances of 100 kilometres (62 miles) or more to aircraft at cruising altitude.

View the full Wikipedia page for Very high frequency
↑ Return to Menu

High frequency in the context of Ground wave

Ground wave is a mode of radio propagation that consists of currents traveling through the earth. Ground waves propagate parallel to and adjacent to the surface of the Earth, and are capable of covering long distances by diffracting around the Earth's curvature. This radiation is also known as the Norton surface wave, or more properly the Norton ground wave, because ground waves in radio propagation are not confined to the surface. Groundwave contrasts with line-of-sight propagation that requires no medium, and skywave via the ionosphere.

Ground wave is important for radio signals below 30 MHz, but is generally insignificant at higher frequencies where line-of-sight propagation dominates. AM and longwave broadcasting, navigation systems such as LORAN, low-frequency time signals, non-directional beacons, and short-range HF communications all make use of it. Range depends on frequency and ground conductivity, with lower frequencies and higher ground conductivity permitting longer distances.

View the full Wikipedia page for Ground wave
↑ Return to Menu

High frequency in the context of Skywave

In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave propagation can be used to communicate beyond the horizon, at intercontinental distances. It is mostly used in the shortwave frequency bands.

As a result of skywave propagation, a signal from a distant AM broadcasting station, a shortwave station, or – during sporadic E propagation conditions (principally during the summer months in both hemispheres) – a distant VHF FM or TV station can sometimes be received as clearly as local stations. Most long-distance shortwave (high frequency) radio communication – between 3 and 30 MHz – is a result of skywave propagation. Since the early 1920s amateur radio operators (or "hams"), limited to lower transmitter power than broadcast stations, have taken advantage of skywave for long-distance (or "DX") communication.

View the full Wikipedia page for Skywave
↑ Return to Menu

High frequency in the context of Shortwave radio

Shortwave radio is radio transmission using radio frequencies in the shortwave bands (SW). There is no official definition of the band range, but it always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (approximately 100 to 10 metres in wavelength). It lies between the medium frequency band (MF) and the bottom of the VHF band.

Radio waves in the shortwave band can be reflected or refracted from a layer of electrically charged atoms in the atmosphere called the ionosphere. Therefore, short waves directed at an angle into the sky can be reflected back to Earth at great distances, beyond the horizon. This is called skywave or "skip" propagation. Thus shortwave radio can be used for communication over very long distances, in contrast to radio waves of higher frequency, which travel in straight lines (line-of-sight propagation) and are generally limited by the visual horizon, about 64 km (40 miles).

View the full Wikipedia page for Shortwave radio
↑ Return to Menu

High frequency in the context of Amateur radio emergency communications

In times of crisis and natural disasters, amateur radio is often used as a means of emergency communication when wireline, cell phones and other conventional means of communications fail.

Unlike commercial systems, amateur radio is usually independent of terrestrial facilities that can fail. It is dispersed throughout a community without "choke points" such as cellular telephone sites that can be overloaded.

View the full Wikipedia page for Amateur radio emergency communications
↑ Return to Menu

High frequency in the context of Family Radio Service

The Family Radio Service (FRS) is a walkie-talkie radio system authorized in the United States since 1996. This personal radio service uses channelized frequencies around 462 and 467 MHz in the ultra high frequency (UHF) band. It does not suffer the interference effects found on citizens' band (CB) at 27 MHz, or the 49 MHz band also used by cordless telephones, toys, and baby monitors. FRS uses frequency modulation (FM) instead of amplitude modulation (AM). Since the UHF band has different radio propagation characteristics, short-range use of FRS may be more predictable than the more powerful license-free radios operating in the HF CB band.

Initially proposed by RadioShack in 1994 for use by families, FRS gained consumer popularity due to the lack of monthly fees (unlike cell phones) and being inexpensive to buy the radios. It has also seen significant adoption by business interests, as an unlicensed, low-cost alternative to the business band. New rules issued by the FCC in May 2017 clarify and simplify the overlap between FRS and General Mobile Radio Service (GMRS) radio services, GMRS providing a much improved range over FRS.

View the full Wikipedia page for Family Radio Service
↑ Return to Menu

High frequency in the context of Megasonic cleaning

Megasonic cleaning is a specialized cleaning method that utilizes high-frequency sound waves to remove contaminants from delicate surfaces. It is particularly effective in industries like semiconductor manufacturing, optics, and medical device production, where precision and gentle cleaning are crucial. It is a type of acoustic cleaning related to ultrasonic cleaning. Similar to ultrasonic cleaning, megasonic cleaning uses a transducer that sits on top of a piezoelectric substrate. The transducer creates acoustic waves at a higher frequency (typically 0.8–2 MHz) than ultrasonic cleaning (20-200 kHz). As a result, the cavitation that occurs is reduced and on a much smaller scale.

View the full Wikipedia page for Megasonic cleaning
↑ Return to Menu

High frequency in the context of Shortwave bands

Shortwave bands are frequency allocations for use within the shortwave radio spectrum (the upper medium frequency [MF] band and all of the high frequency [HF] band). Radio waves in these frequency ranges can be used for very long distance (transcontinental) communication because they can reflect off layers of charged particles in the ionosphere and return to Earth beyond the horizon, a mechanism called skywave or “skip” propagation. They are allocated by the ITU for radio services such as maritime communications, international shortwave broadcasting and worldwide amateur radio. The bands are conventionally named by their wavelength in metres, for example the ‘20 meter band’. Radio propagation and possible communication distances vary depending on the time of day, the season and the level of solar activity.

View the full Wikipedia page for Shortwave bands
↑ Return to Menu

High frequency in the context of Medium frequency

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers (1000 to 100 m). Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

View the full Wikipedia page for Medium frequency
↑ Return to Menu