High explosives in the context of Light


High explosives in the context of Light

High explosives Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about High explosives in the context of "Light"


⭐ Core Definition: High explosives

An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material. The material may either be composed solely of one ingredient or be a mixture containing at least two substances.

The potential energy stored in an explosive material may, for example, be:

↓ Menu
HINT:

In this Dossier

High explosives in the context of Gunpowder

Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, charcoal (which is mostly carbon), and potassium nitrate (saltpeter). The sulfur and charcoal act as fuels, while the saltpeter is an oxidizer. Gunpowder has been widely used as a propellant in firearms, artillery, rocketry, and pyrotechnics, including use as a blasting agent for explosives in quarrying, mining, building pipelines, tunnels, and roads.

Gunpowder is classified as a low explosive because of its relatively slow decomposition rate, low ignition temperature and consequently low brisance (breaking/shattering). Low explosives deflagrate—burning at subsonic speeds—whereas high explosives detonate, producing a supersonic shockwave. Ignition of gunpowder packed behind a projectile generates enough pressure to force the shot from the muzzle at high speed, but usually not enough force to rupture the gun barrel. It thus makes a good propellant but is less suitable for shattering rock or fortifications with its low-yield explosive power. Nonetheless, it was widely used to fill fused artillery shells (and used in mining and civil engineering projects) until the second half of the 19th century, when the first high explosives were put into use.

View the full Wikipedia page for Gunpowder
↑ Return to Menu

High explosives in the context of Defense Threat Reduction Agency

The Defense Threat Reduction Agency (DTRA) is both a defense agency and a combat support agency within the United States Department of Defense (DoD) for countering weapons of mass destruction (WMD; chemical, biological, radiological, nuclear, and high explosives) and supporting the nuclear enterprise. Its stated mission is to provide "cross-cutting solutions to enable the Department of Defense, the United States Government, and international partners to Deter strategic attack against the United States and its allies; Prevent, reduce, and counter WMD and emerging threats; and Prevail against WMD-armed adversaries in crisis and conflict." DTRA is headquartered in Fort Belvoir, Virginia. The DTRA mission, organization and management, responsibilities and functions, relationships, authorities, and administration are defined in DoD Directive 5105.62, Defense Threat Reduction Agency (DTRA).

View the full Wikipedia page for Defense Threat Reduction Agency
↑ Return to Menu

High explosives in the context of Chemical weapons in World War I

The use of toxic chemicals as weapons dates back thousands of years, but the first large-scale use of chemical weapons was during World War I. They were primarily used to demoralize, injure, and kill entrenched defenders, against whom the indiscriminate and generally very slow-moving or static nature of gas clouds would be most effective. The types of weapons employed ranged from disabling chemicals, such as tear gas, to lethal agents like phosgene, chlorine, and mustard gas. These chemical weapons caused medical problems. This chemical warfare was a major component of the first global war and first total war of the 20th century. Gas attack left a strong psychological impact, and estimates go up to about 90,000 fatalities and a total of about 1.3 million casualties. However, this would amount to only 3–3.5% of overall casualties, and gas was unlike most other weapons of the period because it was possible to develop countermeasures, such as gas masks. In the later stages of the war, as the use of gas increased, its overall effectiveness diminished. The widespread use of these agents of chemical warfare, and wartime advances in the composition of high explosives, gave rise to an occasionally expressed view of World War I as "the chemist's war" and also the era where weapons of mass destruction were created.

The use of poison gas by all major belligerents throughout World War I constituted war crimes as its use violated the 1899 Hague Declaration Concerning Asphyxiating Gases and the 1907 Hague Convention on Land Warfare, which prohibited the use of "poison or poisoned weapons" in warfare. Chemical weapons in World War II saw widespread use by Germany during the Holocaust and by Japan against China. Battlefield use against Western Allies was prevented by deterrence.

View the full Wikipedia page for Chemical weapons in World War I
↑ Return to Menu

High explosives in the context of Hugh Bradner

Hugh Bradner (November 5, 1915 – May 5, 2008) was an American physicist at the University of California who is credited with inventing the neoprene wetsuit, which helped to revolutionize scuba diving and surfing.

A graduate of Ohio's Miami University, he received his doctorate from California Institute of Technology in Pasadena, California, in 1941. He worked at the US Naval Ordnance Laboratory during World War II, where he researched naval mines. In 1943, he was recruited by Robert Oppenheimer to join the Manhattan Project at the Los Alamos Laboratory. There, he worked with scientists including Luis Alvarez, John von Neumann and George Kistiakowsky on the development of the high explosives and exploding-bridgewire detonators required by atomic bombs.

View the full Wikipedia page for Hugh Bradner
↑ Return to Menu

High explosives in the context of Cordite

Cordite is a family of smokeless propellants developed and produced in Britain since 1889 to replace black powder as a military firearm propellant. Cordite is a mixture of nitrocellulose and nitroglycerine, and is therefore a mixture of a chemical high explosive stabilized with a low explosive. These produce a subsonic deflagration wave rather than the supersonic detonation wave produced by brisants, or high explosives. The hot gases produced by burning gunpowder or cordite generate sufficient pressure to propel a bullet or shell to its target, but not so quickly as to routinely destroy the barrel of the gun.

Cordite was used initially in the .303 British, Mark I and II, standard rifle cartridge between 1891 and 1915. Shortages of cordite in World War I led to the creation of the "Devil's Porridge" munitions factory (HM Factory, Gretna) on the English–Scottish border, which produced around 800 tonnes of cordite per week. The UK also imported some United States–developed smokeless powders for use in rifle cartridges. Cordite was also used for large weapons, such as tank guns, artillery, and naval guns. It has been used mainly for this purpose since the late 19th century by the UK and British Commonwealth countries. Its use was further developed before World War II, and as 2-and-3-inch-diameter (51 and 76 mm) Unrotated Projectiles for launching anti-aircraft weapons. Small cordite rocket charges were also developed for ejector seats made by the Martin-Baker Company. Cordite was also used in the detonation system of the Little Boy atomic bomb dropped over Hiroshima in August 1945.

View the full Wikipedia page for Cordite
↑ Return to Menu