High-level programming language in the context of "Software"

⭐ In the context of Software, high-level programming languages are considered a key advancement because they primarily addressed limitations associated with…

Ad spacer

⭐ Core Definition: High-level programming language

A high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.

High-level refers to a level of abstraction from the hardware details of a processor inherent in machine and assembly code. Rather than dealing with registers, memory addresses, and call stacks, high-level languages deal with variables, arrays, objects, arithmetic and Boolean expressions, functions, loops, threads, locks, and other computer science abstractions, intended to facilitate correctness and maintainability. Unlike low-level assembly languages, high-level languages have few, if any, language elements that translate directly to a machine's native opcodes. Other features, such as string handling, object-oriented programming features, and file input/output, may also be provided. A high-level language allows for source code that is detached and separated from the machine details. That is, unlike low-level languages like assembly and machine code, high-level language code may result in data movements without the programmer's knowledge. Some control of what instructions to execute is handed to the compiler.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ High-level programming language in the context of Software

Software consists of computer programs that instruct the execution of a computer. Software also includes design documents and specifications.

The history of software is closely tied to the development of digital computers in the mid-20th century. Early programs were written in the machine language specific to the hardware. The introduction of high-level programming languages in 1958 allowed for more human-readable instructions, making software development easier and more portable across different computer architectures. Software in a programming language is run through a compiler or interpreter to execute on the architecture's hardware. Over time, software has become complex, owing to developments in networking, operating systems, and databases.

↓ Explore More Topics
In this Dossier

High-level programming language in the context of Computer programming

Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic.

Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process.

↑ Return to Menu

High-level programming language in the context of Strahler number

In mathematics, the Strahler number or Horton–Strahler number of a mathematical tree is a numerical measure of its branching complexity.

These numbers were first developed in hydrology, as a way of measuring the complexity of rivers and streams, by Robert E. HortonΒ (1945) and Arthur Newell StrahlerΒ (1952, 1957). In this application, they are referred to as the Strahler stream order and are used to define stream size based on a hierarchy of tributaries.The same numbers also arise in the analysis of L-systems and of hierarchical biological structures such as (biological) trees and animal respiratory and circulatory systems, in register allocation for compilation of high-level programming languages and in the analysis of social networks.

↑ Return to Menu

High-level programming language in the context of Compiler

In computing, a compiler is software that translates computer code written in one programming language (the source language) into another language (the target language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program.

There are many different types of compilers which produce output in different useful forms. A cross-compiler produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A bootstrap compiler is often a temporary compiler, used for compiling a more permanent or better optimized compiler for a language.

↑ Return to Menu

High-level programming language in the context of C++

C++ is a high-level, general-purpose programming language created by Danish computer scientist Bjarne Stroustrup. First released in 1985 as an extension of the C programming language, adding object-oriented (OOP) features, it has since expanded significantly over time adding more OOP and other features; as of 1997/C++98 standardization, C++ has added functional features, in addition to facilities for low-level memory manipulation for systems like microcomputers or to make operating systems like Linux or Windows, and even later came features like generic programming (through the use of templates). C++ is usually implemented as a compiled language, and many vendors provide C++ compilers, including the Free Software Foundation, LLVM, Microsoft, Intel, Embarcadero, Oracle, and IBM.

C++ was designed with systems programming and embedded, resource-constrained software and large systems in mind, with performance, efficiency, and flexibility of use as its design highlights. C++ has also been found useful in many other contexts, with key strengths being software infrastructure and resource-constrained applications, including desktop applications, video games, servers (e.g., e-commerce, web search, or databases), and performance-critical applications (e.g., telephone switches or space probes).

↑ Return to Menu

High-level programming language in the context of Command (computing)

In computing, a command is a high-level instruction received via an external interface that directs the behavior of a computer program. Commonly, commands are sent to a program via a command-line interface, a script, a network protocol, or as an event triggered in a graphical user interface.

Many commands support arguments to specify input and to modify default behavior. Terminology and syntax varies but there are notable common approaches. Typically, an option or a flag is a name (without whitespace) with a prefix such as dash or slash that modifies default behavior. An option might have a required value that follows it. Typically, flag refers to an option that does not have a following value. A parameter is an argument that specifies input to the command and its meaning is based on its position in the command line relative to other parameters; generally ignoring options. A parameter can specify anything, but often it specifies a file by name or path.

↑ Return to Menu

High-level programming language in the context of Variable (computer science)

In high-level programming, a variable is an abstract storage or indirection location paired with an associated symbolic name, which contains some known or unknown quantity of data or object referred to as a value; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer, float, string, etc...) or undefined. A variable can eventually be associated with or identified by a memory address. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows the name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time, and the value of the variable may thus change during the course of program execution.

Variables in programming may not directly correspond to the concept of variables in mathematics. The latter is abstract, having no reference to a physical object such as storage location. The value of a computing variable is not necessarily part of an equation or formula as in mathematics. Furthermore, the variables can also be constants if the value is defined statically. Variables in computer programming are frequently given long names to make them relatively descriptive of their use, whereas variables in mathematics often have terse, one- or two-character names for brevity in transcription and manipulation.

↑ Return to Menu