Hexadecimal in the context of "Binary number"

Play Trivia Questions online!

or

Skip to study material about Hexadecimal in the context of "Binary number"

Ad spacer

⭐ Core Definition: Hexadecimal

Hexadecimal (hex for short) is a positional numeral system for representing a numeric value as base 16. For the most common convention, a digit is represented as "0" to "9" like for decimal and as a letter of the alphabet from "A" to "F" (either upper or lower case) for the digits with decimal value 10 to 15.

As typical computer hardware is binary in nature and that hex is power of 2, the hex representation is often used in computing as a dense representation of binary information. A hex digit represents 4 contiguous bits –known as a nibble. An 8-bit byte is two hex digits, such as 2C.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Hexadecimal in the context of Numerical digit

A numerical digit (often shortened to just digit) or numeral is a single symbol used alone (such as "1"), or in combinations (such as "15"), to represent numbers in positional notation, such as the common base 10. The name "digit" originates from the Latin digiti meaning fingers.

For any numeral system with an integer base, the number of different digits required is the absolute value of the base. For example, decimal (base 10) requires ten digits (0 to 9), and binary (base 2) requires only two digits (0 and 1). Bases greater than 10 require more than 10 digits, for instance hexadecimal (base 16) requires 16 digits (usually 0 to 9 and A to F).

↑ Return to Menu

Hexadecimal in the context of Rational number

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer (for example, ). The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also calledthe field of rationals or the field of rational numbers. It is usually denoted by boldface Q, or blackboard bold

A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: 3/4 = 0.75), or eventually begins to repeat the same finite sequence of digits over and over (example: 9/44 = 0.20454545...). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see Repeating decimal § Extension to other bases).

↑ Return to Menu

Hexadecimal in the context of Zero

0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures. Multiplying any number by 0 results in 0, and consequently dividing by 0 is generally considered to be undefined in arithmetic.

As a numerical digit, 0 plays a crucial role in decimal notation: it indicates that the power of ten corresponding to the place containing a 0 does not contribute to the total. For example, "205" in decimal means two hundreds, no tens, and five ones. The same principle applies in place-value notations that uses a base other than ten, such as binary and hexadecimal. The modern use of 0 in this manner derives from Indian mathematics that was transmitted to Europe via medieval Islamic mathematicians and popularized by Fibonacci. It was independently used by the Maya.

↑ Return to Menu

Hexadecimal in the context of Chinese units of measurement

Chinese units of measurement, known in Chinese as the shìzhì ("market system"), are the traditional units of measurement of the Han Chinese. Although Chinese numerals have been decimal (base-10) since the Shang, several Chinese measures use hexadecimal (base-16). Local applications have varied, but the Chinese dynasties usually proclaimed standard measurements and recorded their predecessor's systems in their histories.

In the present day, the People's Republic of China maintains some customary units based upon the market units but standardized to round values in the metric system, for example the common jin or catty of exactly 500 g. The Chinese name for most metric units is based on that of the closest traditional unit; when confusion might arise, the word "market" (, shì) is used to specify the traditional unit and "common" or "public" (, gōng) is used for the metric value. Taiwan, like Korea, saw its traditional units standardized to Japanese values and their conversion to a metric basis, such as the Taiwanese ping of about 3.306 m based on the square ken. The Hong Kong SAR continues to use its traditional units, now legally defined based on a local equation with metric units. For instance, the Hong Kong catty is precisely 604.78982 g.

↑ Return to Menu

Hexadecimal in the context of Binary code

A binary code is the value of a data-encoding convention represented in a binary notation that usually is a sequence of 0s and 1s; sometimes called a bit string. For example, ASCII is an 8-bit text encoding that in addition to the human readable form (letters) can be represented as binary. Binary code can also refer to the mass noun code that is not human readable in nature such as machine code and bytecode.

Even though all modern computer data is binary in nature, and therefore can be represented as binary, other numerical bases may be used. Power of 2 bases (including hex and octal) are sometimes considered binary code since their power-of-2 nature makes them inherently linked to binary. Decimal is, of course, a commonly used representation. For example, ASCII characters are often represented as either decimal or hex. Some types of data such as image data is sometimes represented as hex, but rarely as decimal.

↑ Return to Menu

Hexadecimal in the context of Array data structure

In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key, a collection of which may be a tuple, known as an index tuple. In general, an array is a mutable and linear collection of elements with the same data type. An array is stored such that the position (memory address) of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called a one-dimensional array.

For example, an array of ten 32-bit (4-byte) integer variables, with indices 0 through 9, may be stored as ten words at memory addresses 2000, 2004, 2008, ..., 2036, (in hexadecimal: 0x7D0, 0x7D4, 0x7D8, ..., 0x7F4) so that the element with index i has the address 2000 + (i × 4).The memory address of the first element of an array is called first address, foundation address, or base address.

↑ Return to Menu