Heterotrophs in the context of "Autotroph"

Play Trivia Questions online!

or

Skip to study material about Heterotrophs in the context of "Autotroph"

Ad spacer

⭐ Core Definition: Heterotrophs

A heterotroph (/ˈhɛtərəˌtrf, -ˌtrɒf/; from Ancient Greek ἕτερος (héteros), meaning "other", and τροφή (trophḗ), meaning "nourishment") is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly matter from other organisms. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include most animals, all fungi, some bacteria and protists, and many parasitic plants. The term heterotroph arose in microbiology in 1946 as part of a classification of microorganisms based on their type of nutrition. The term is now used in many fields, such as ecology, in describing the food chain. Heterotrophs occupy the second and third trophic levels of the food chain while autotrophs occupy the first trophic level.

Heterotrophs may be subdivided according to their energy source. If the heterotroph uses chemical energy, it is a chemoheterotroph (e.g., humans and mushrooms). If it uses light for energy, then it is a photoheterotroph (e.g., haloquadratum walsbyi and green non-sulfur bacteria).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Heterotrophs in the context of Autotrophy

An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, generally using energy from light or inorganic chemical reactions. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.

The primary producers can convert the energy in the light (phototroph and photoautotroph) or the energy in inorganic chemical compounds (chemotrophs or chemolithotrophs) to build organic molecules, which is usually accumulated in the form of biomass and will be used as carbon and energy source by other organisms (e.g. heterotrophs and mixotrophs). The photoautotrophs are the main primary producers, converting the energy of the light into chemical energy through photosynthesis, ultimately building organic molecules from carbon dioxide, an inorganic carbon source. Examples of chemolithotrophs are some archaea and bacteria (unicellular organisms) that produce biomass from the oxidation of inorganic chemical compounds; these organisms are called chemoautotrophs, and are frequently found in hydrothermal vents in the deep ocean. Primary producers are at the lowest trophic level, and are the reasons why Earth sustains life to this day.

↑ Return to Menu

Heterotrophs in the context of Chloroflexales

Chloroflexales is an order of bacteria in the class Chloroflexia. The clade is also known as filamentous anoxygenic phototrophic bacteria (FAP), as the order contains phototrophs that do not produce oxygen. These bacteria are facultative aerobic. They generally use chemotrophy when oxygen is present and switch to light-derived energy when otherwise. Most species are heterotrophs, but a few are capable of photoautotrophy.

The order can be divided into two suborders. Chloroflexineae ("Green FAP", "green non-sulfur bacteria") is the better-known one. This suborder uses chlorosomes, a specialized antenna complex, to pass light energy to the reaction center. Roseiflexineae ("Red FAP") on the other hand has no such ability. The named colors are not absolute, as growth conditions such as oxygen concentration will make a green FAP appear green, brown, or reddish-orange by inducing changes in pigment composition.

↑ Return to Menu