Header (computing) in the context of "Encapsulation (networking)"

Play Trivia Questions online!

or

Skip to study material about Header (computing) in the context of "Encapsulation (networking)"




⭐ Core Definition: Header (computing)

In information technology, header is supplemental data placed at the beginning of a block of data being stored or transmitted. In data transmission, the data following the header is sometimes called the payload or body.

It is vital that header composition follows a clear and unambiguous specification or format, to allow for parsing.

↓ Menu

👉 Header (computing) in the context of Encapsulation (networking)

Encapsulation is the computer-networking process of concatenating layer-specific headers or trailers with a service data unit (i.e. a payload) for transmitting information over computer networks. Deencapsulation (or de-encapsulation) is the reverse computer-networking process for receiving information; it removes from the protocol data unit (PDU) a previously concatenated header or trailer that an underlying communications layer transmitted.

Encapsulation and deencapsulation allow the design of modular communication protocols so to logically separate the function of each communications layer, and abstract the structure of the communicated information over the other communications layers. These two processes are common features of the computer-networking models and protocol suites, like in the OSI model and internet protocol suite. However, encapsulation/deencapsulation processes can also serve as malicious features like in the tunneling protocols.

↓ Explore More Topics
In this Dossier

Header (computing) in the context of Packet switching

In telecommunications, packet switching is a method of grouping data into short messages in fixed format, i.e., packets, that are transmitted over a telecommunications network. Packets consist of a header and a payload. Data in the header is used by networking hardware to direct the packet to its destination, where the payload is extracted and used by an operating system, application software, or higher layer protocols. Packet switching is the primary basis for data communications in computer networks worldwide.

During the early 1960s, American engineer Paul Baran developed a concept he called distributed adaptive message block switching as part of a research program at the RAND Corporation, funded by the United States Department of Defense. His proposal was to provide a fault-tolerant, efficient method for communication of voice messages using low-cost hardware to route the message blocks across a distributed network. His ideas contradicted then-established principles of pre-allocation of network bandwidth, exemplified by the development of telecommunications in the Bell System. The new concept found little resonance among network implementers until the independent work of Welsh computer scientist Donald Davies at the National Physical Laboratory beginning in 1965. Davies developed the concept for data communication using software switches in a high-speed computer network and coined the term packet switching. His work inspired numerous packet switching networks in the decade following, including the incorporation of the concept into the design of the ARPANET in the United States and the CYCLADES network in France. The ARPANET and CYCLADES were the primary precursor networks of the modern Internet.

↑ Return to Menu

Header (computing) in the context of Network packet

In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload (e.g., source and destination network addresses, error detection codes, or sequencing information). Typically, control information is found in packet headers and trailers.

In packet switching, the bandwidth of the transmission medium is shared between multiple communication sessions, in contrast to circuit switching, in which circuits are preallocated for the duration of one session and data is typically transmitted as a continuous bit stream.

↑ Return to Menu

Header (computing) in the context of Internet Protocol

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information.IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

↑ Return to Menu

Header (computing) in the context of Datagram

A datagram is a basic transfer unit associated with a packet-switched network. Datagrams are typically structured in header and payload sections. Datagrams provide a connectionless communication service across a packet-switched network. The delivery, arrival time, and order of arrival of datagrams need not be guaranteed by the network.

↑ Return to Menu

Header (computing) in the context of Payload (computing)

In computing and telecommunications, the payload is the part of transmitted data that is the actual intended message. Headers and metadata are sent only to enable payload delivery and are considered overhead.

In the context of a computer virus or worm, the payload is the portion of the malware which performs malicious action.

↑ Return to Menu

Header (computing) in the context of Packet-switched network

In telecommunications, packet switching is a method of grouping data into short messages in fixed format, i.e., packets, that are transmitted over a telecommunications network. Packets consist of a header and a payload. Data in the header is used by networking hardware to direct the packet to its destination, where the payload is extracted and used by an operating system, application software, or higher layer protocols. Packet switching is the primary basis for data communications in computer networks worldwide.

During the early 1960s, American engineer Paul Baran developed a concept he called distributed adaptive message block switching as part of a research program at the RAND Corporation, funded by the United States Department of Defense. His proposal was to provide a fault-tolerant, efficient method for communication of voice messages using low-cost hardware to route the message blocks across a distributed network. His ideas contradicted then-established principles of pre-allocation of network bandwidth, exemplified by the development of telecommunications in the Bell System. The new concept found little resonance among network implementers until the independent work of British computer scientist Donald Davies at the National Physical Laboratory beginning in 1965. Davies developed the concept for data communication using software switches in a high-speed computer network and coined the term packet switching. His work inspired numerous packet switching networks in the decade following, including the incorporation of the concept into the design of the ARPANET in the United States and the CYCLADES network in France. The ARPANET and CYCLADES were the primary precursor networks of the modern Internet.

↑ Return to Menu

Header (computing) in the context of Trailer (computing)

In information technology, a trailer or footer refers to supplemental data (metadata) placed at the end of a block of data being stored or transmitted, which may contain information for the handling of the data block, or simply mark the block's end.

In data transmission, the data following the end of the header and preceding the start of the trailer is called the payload or body.

↑ Return to Menu