Haskell Curry in the context of Haskell


Haskell Curry in the context of Haskell

Haskell Curry Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Haskell Curry in the context of "Haskell"


⭐ Core Definition: Haskell Curry

Haskell Brooks Curry (/ˈhæskəl/ HAS-kəl; September 12, 1900 – September 1, 1982) was an American mathematician, logician and computer scientist. Curry is best known for his work in combinatory logic, whose initial concept is based on a paper by Moses Schönfinkel, for which Curry did much of the development. Curry is also known for Curry's paradox and the Curry–Howard correspondence. Named for him are three programming languages: Haskell, Brook, and Curry, and the concept of currying, a method to transform functions, used in mathematics and computer science.

↓ Menu
HINT:

👉 Haskell Curry in the context of Haskell

Haskell (/ˈhæskəl/) is a general-purpose, statically typed, purely functional programming language with type inference and lazy evaluation. Haskell pioneered several programming language features including type classes for type-safe operator overloading and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).

Haskell's semantics are historically based on those of the Miranda programming language, which served to focus the efforts of the initial Haskell working group. The last formal specification of the language was made in July 2010, while the development of GHC continues to expand Haskell via language extensions.

↓ Explore More Topics
In this Dossier

Haskell Curry in the context of Curry's paradox

Curry's paradox is a paradox in which an arbitrary claim F is proved from the mere existence of a sentence C that says of itself "If C, then F". The paradox requires only a few apparently-innocuous logical deduction rules. Since F is arbitrary, any logic having these rules allows one to prove everything. The paradox may be expressed in natural language and in various logics, including certain forms of set theory, lambda calculus, and combinatory logic.

The paradox is named after the logician Haskell Curry, who wrote about it in 1942. It has also been called Löb's paradox after Martin Hugo Löb, due to its relationship to Löb's theorem.

View the full Wikipedia page for Curry's paradox
↑ Return to Menu

Haskell Curry in the context of Combinatory logic

Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments.

View the full Wikipedia page for Combinatory logic
↑ Return to Menu

Haskell Curry in the context of Curry–Howard correspondence

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs. It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation.

It is a generalization of a syntactic analogy between systems of formal logic and computational calculi that was first discovered by the American mathematician Haskell Curry and the logician William Alvin Howard. It is the link between logic and computation that is usually attributed to Curry and Howard, although the idea is related to the operational interpretation of intuitionistic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and Andrey Kolmogorov (see Brouwer–Heyting–Kolmogorov interpretation) and Stephen Kleene (see Realizability). The relationship has been extended to include category theory as the three-way Curry–Howard–Lambek correspondence.

View the full Wikipedia page for Curry–Howard correspondence
↑ Return to Menu