Hardness in the context of "Conté crayon"

Play Trivia Questions online!

or

Skip to study material about Hardness in the context of "Conté crayon"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Hardness in the context of Tungsten

Tungsten (also called wolfram) is a chemical element; it has symbol W (from German: Wolfram). Its atomic number is 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first isolated as a metal in 1783. Its important ores include scheelite and wolframite, the latter lending the element its alternative name.

The free element is remarkable for its robustness, especially the fact that it has the highest melting point of all known elements, melting at 3,422 °C (6,192 °F; 3,695 K). It also has the highest boiling point, at 5,930 °C (10,706 °F; 6,203 K). Its density is 19.254 g/cm, comparable with that of uranium and gold, and much higher (about 1.7 times) than that of lead. Polycrystalline tungsten is an intrinsically brittle and hard material (under standard conditions, when uncombined), making it difficult to work into metal. However, pure single-crystalline tungsten is more ductile and can be cut with a hard-steel hacksaw.

↑ Return to Menu

Hardness in the context of Physical property

A physical property is any property of a physical system that is measurable. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called physical quantity. Measurable physical quantities are often referred to as observables. Some physical properties are qualitative, such as shininess, brittleness, etc.; some general qualitative properties admit more specific related quantitative properties, such as in opacity, hardness, ductility, viscosity, etc.

Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined.

↑ Return to Menu

Hardness in the context of Carat (purity)

The fineness of a precious metal object (coin, bar, jewelry, etc.) represents the weight of fine metal therein, in proportion to the total weight which includes alloying base metals and any impurities. Alloy metals are added to increase hardness and durability of coins and jewelry, alter colors, decrease the cost per weight, or avoid the cost of high-purity refinement. For example, copper is added to the precious metal silver to make a more durable alloy for use in coins, housewares and jewelry. Coin silver, which was used for making silver coins in the past, contains 90% silver and 10% copper, by mass. Sterling silver contains 92.5% silver and 7.5% of other metals, usually copper, by mass.

Various ways of expressing fineness have been used and two remain in common use: millesimal fineness expressed in units of parts per 1,000 and karats or carats used only for gold. Karats measure the parts per 24, so that 18 karat = 1824 = 75% gold and 24 karat gold is considered 100% gold.

↑ Return to Menu

Hardness in the context of Cutting

Cutting is the separation or opening of a physical object through the application of an acutely directed force.

Implements commonly used for cutting are the knife and saw, or in medicine and science the scalpel and microtome. However, any sufficiently sharp object is capable of cutting if it has a hardness sufficiently larger than the object being cut, and if it is applied with sufficient force. Even liquids can be used to cut things when applied with sufficient force (see water jet cutter).

↑ Return to Menu

Hardness in the context of Abrasion (geology)

Abrasion is a process of weathering that occurs when material being transported wears away at a surface over time, commonly occurring with ice and glaciers. The primary process of abrasion is physical weathering. Its the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs in four ways: glaciation slowly grinds rocks picked up by ice against rock surfaces; solid objects transported in river channels make abrasive surface contact with the bed with ppl in it and walls; objects transported in waves breaking on coastlines; and by wind transporting sand or small stones against surface rocks. Abrasion is the natural scratching of bedrock by a continuous movement of snow or glacier downhill. This is caused by a force, friction, vibration, or internal deformation of the ice, and by sliding over the rocks and sediments at the base (that also causes an avalanche) that causes the glacier to move.

Abrasion, under its strictest definition, is commonly confused with attrition and sometimes hydraulic action however, the latter less commonly so. Both abrasion and attrition refers to the wearing down of an object. Abrasion occurs as a result of two surfaces rubbing against each other, resulting in the wearing down of one or both of the surfaces. However, attrition refers to the breaking off of particles (erosion) which occurs as a result of objects hitting against each other. Abrasion leads to surface-level destruction over a period of time, whereas attrition results in more change at a faster rate. Today, the geomorphology community uses the term "abrasion" in a looser way, often interchangeably with the term "wear".

↑ Return to Menu

Hardness in the context of Machinability

Machinability is the ease with which a metal can be cut (machined) permitting the removal of the material with a satisfactory finish at low cost. Materials with good machinability (free-machining materials) require little power to cut, can be cut quickly, easily obtain a good finish, and do not cause significant wear on the tooling. Factors that typically improve a material's performance often degrade its machinability, presenting a significant engineering challenge.

Machinability can be difficult to predict due to the large number of variables involved in the machining process. Two sets of factors are the condition and physical properties of the work materials. The condition of the work material includes at least eight factors: microstructure, grain size, heat treatment, chemical composition, fabrication, hardness, yield strength, and tensile strength. Physical properties are those of the individual material groups, such as the modulus of elasticity, thermal conductivity, thermal expansion, and work hardening. Other important factors are operating conditions, cutting tool material and geometry, and the parameters of the specific machining process being performed.

↑ Return to Menu

Hardness in the context of Coralline algae

Coralline algae are red algae in the order Corallinales, characterized by a thallus containing calcareous deposits within its cell walls, giving it hardness. The colors of these algae are typically some hue of pink, or another shade of red, but some species can be purple, yellow, blue, white, or gray-green. Typically, these algae grow in a crustose manner (encrusting rocks and other hardscape); in the intertidal zone of rocky shorelines, and within coral reefs, these algae appear as an abundance of colorful patches on rock surfaces. Unattached specimens (maerl, rhodoliths) may form relatively smooth compact balls, or forming warty to fruticose thalli.

The red algae belong to the division Rhodophyta, within which the coralline algae form the order Corallinales. There are over 1600 described species of nongeniculate coralline algae. The corallines are presently grouped into two families on the basis of their reproductive structures. Most are marine, though one species lives in freshwater; Pneophyllum cetinaensis.

↑ Return to Menu

Hardness in the context of Sapphire

Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide (α-Al2O3) with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name sapphire is derived from the Latin word sapphirus, itself from the Greek word sappheiros (σάπφειρος), which referred to lapis lazuli. It is typically blue, but natural "fancy" sapphires also occur in yellow, purple, orange, and green colors; "parti sapphires" show two or more colors. Red corundum stones also occur, but are called rubies rather than sapphires. Pink-colored corundum may be classified either as ruby or sapphire depending on the locale. Commonly, natural sapphires are cut and polished into gemstones and worn in jewelry. They also may be created synthetically in laboratories for industrial or decorative purposes in large crystal boules. Because of the remarkable hardness of sapphires – 9 on the Mohs scale (the third-hardest mineral, after diamond at 10 and moissanite at 9.5) – sapphires are also used in some non-ornamental applications, such as infrared optical components, high-durability windows, wristwatch crystals and movement bearings, and very thin electronic wafers, which are used as the insulating substrates of special-purpose solid-state electronics such as integrated circuits and GaN-based blue LEDs. It occurs in association with ruby, zircon, biotite, muscovite, calcite, dravite and quartz.

↑ Return to Menu

Hardness in the context of Aluminium oxide

Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, ALOX or alundum in various forms and applications and alumina is refined from bauxite. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire, which have an alumina content approaching 100%. Al2O3 is used as feedstock to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

↑ Return to Menu