When two fluid layers move relative to each other, a friction force develops between them and the slower layer acts to slow down the faster layer. This internal resistance to flow is described by the fluid property called viscosity, which reflects the internal stickiness of the fluid. In liquids, viscosity arises from cohesive molecular forces, while in gases it results from molecular collisions. Except for the case of superfluidity, there is no fluid with zero viscosity, and thus all fluid flows involve viscous effects to some degree.
For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds.