Haploidisation in the context of "Parasexual cycle"

Play Trivia Questions online!

or

Skip to study material about Haploidisation in the context of "Parasexual cycle"

Ad spacer

⭐ Core Definition: Haploidisation

Haploidisation is the process of halving the chromosomal content of a cell, producing a haploid cell. Within the normal reproductive cycle, haploidisation is one of the major functional consequences of meiosis, the other being a process of chromosomal crossover that mingles the genetic content of the parental chromosomes. Usually, haploidisation creates a monoploid cell from a diploid progenitor, or it can involve halving of a polyploid cell, for example to make a diploid potato plant from a tetraploid lineage of potato plants.

If haploidisation is not followed by fertilisation, the result is a haploid lineage of cells. For example, experimental haploidisation may be used to recover a strain of haploid Dictyostelium from a diploid strain. It sometimes occurs naturally in plants when meiotically reduced cells (usually egg cells) develop by parthenogenesis.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Haploidisation in the context of Parasexual cycle

The parasexual cycle, a process restricted to fungi and single-celled organisms, is a nonsexual mechanism of parasexuality for transferring genetic material without meiosis or the development of sexual structures. It was first described by Italian geneticist Guido Pontecorvo in 1956 during studies on Aspergillus nidulans (also called Emericella nidulans when referring to its sexual form, or teleomorph). A parasexual cycle is initiated by the fusion of hyphae (anastomosis) during which nuclei and other cytoplasmic components occupy the same cell (heterokaryosis and plasmogamy). Fusion of the unlike nuclei in the cell of the heterokaryon results in formation of a diploid nucleus (karyogamy), which is believed to be unstable and can produce segregants by recombination involving mitotic crossing-over and haploidization. Mitotic crossing-over can lead to the exchange of genes on chromosomes; while haploidization probably involves mitotic nondisjunctions which randomly reassort the chromosomes and result in the production of aneuploid and haploid cells. Like a sexual cycle, parasexuality gives the species the opportunity to recombine the genome and produce new genotypes in their offspring. Unlike a sexual cycle, the process lacks coordination and is exclusively mitotic.

The parasexual cycle resembles sexual reproduction. In both cases, unlike hyphae (or modifications thereof) may fuse (plasmogamy) and their nuclei will occupy the same cell. The unlike nuclei fuse (karyogamy) to form a diploid (zygote) nucleus. In contrast to the sexual cycle, recombination in the parasexual cycle takes place during mitosis followed by haploidization (but without meiosis). The recombined haploid nuclei appear among vegetative cells, which differ genetically from those of the parent mycelium.

↓ Explore More Topics
In this Dossier

Haploidisation in the context of Cell division

Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there are two distinct types of cell division: a vegetative division (mitosis), producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction (meiosis), reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the daughter cells. Mitosis is a part of the cell cycle, in which, replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. In general, mitosis (division of the nucleus) is preceded by the S stage of interphase (during which the DNA replication occurs) and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define the M phase of an animal cell cycleβ€”the division of the mother cell into two genetically identical daughter cells.

To ensure proper progression through the cell cycle, DNA damage is detected and repaired at various cell cycle checkpoints. These checkpoints can halt progression through the cell cycle by inhibiting certain cyclin-CDK complexes. Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of meiosis. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.

↑ Return to Menu