Habitat fragmentation in the context of "Species-area curve"

⭐ In the context of species-area curves, habitat fragmentation is considered…

Ad spacer

⭐ Core Definition: Habitat fragmentation

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment (suspected of being one of the major causes of speciation), and human activity such as land conversion, which can alter the environment much faster and causes the population fluctuation of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Habitat fragmentation in the context of Species-area curve

The species–area relationship or species–area curve describes the relationship between the area of a habitat, or of part of a habitat, and the number of species found within that area. Larger areas tend to contain larger numbers of species, and empirically, the relative numbers seem to follow systematic mathematical relationships. The species–area relationship is usually constructed for a single type of organism, such as all vascular plants or all species of a specific trophic level within a particular site. It is rarely if ever, constructed for all types of organisms if simply because of the prodigious data requirements. It is related but not identical to the species discovery curve.

Ecologists have proposed a wide range of factors determining the slope and elevation of the species–area relationship. These factors include the relative balance between immigration and extinction, rate and magnitude of disturbance on small vs. large areas, predator-prey dynamics, and clustering of individuals of the same species as a result of dispersal limitation or habitat heterogeneity. The species–area relationship has been reputed to follow from the 2nd law of thermodynamics. In contrast to these "mechanistic" explanations, others assert the need to test whether the pattern is simply the result of a random sampling process. Species–area relationships are often evaluated in conservation science in order to predict extinction rates in the case of habitat loss and habitat fragmentation.

↓ Explore More Topics
In this Dossier

Habitat fragmentation in the context of Tropical rainforest

Tropical rainforests are dense and warm rainforests with high rainfall typically found between 10° north and south of the Equator. They are a subset of the tropical forest biome that occurs roughly within the 28° latitudes (in the torrid zone between the Tropic of Cancer and Tropic of Capricorn). Tropical rainforests are a type of tropical moist broadleaf forest, that includes the more extensive seasonal tropical forests. True rainforests usually occur in tropical rainforest climates where no dry season occurs; all months have an average precipitation of at least 60 mm (2.4 in). Seasonal tropical forests with tropical monsoon or savanna climates are sometimes included in the broader definition.

Tropical rainforests ecosystems are distinguished by their consistent, high temperatures, exceeding 18 °C (64 °F) monthly, and substantial annual rainfall. The abundant rainfall results in nutrient-poor, leached soils, which profoundly affect the flora and fauna adapted to these conditions. These rainforests are renowned for their significant biodiversity. They are home to 40–75% of all species globally, including half of the world's animal and plant species, and two-thirds of all flowering plant species. Their dense insect population and variety of trees and higher plants are notable. Described as the "world's largest pharmacy", over a quarter of natural medicines have been discovered in them. However, tropical rainforests are threatened by human activities, such as logging and agricultural expansion, leading to habitat fragmentation and loss.

↑ Return to Menu

Habitat fragmentation in the context of Habitat destruction

Habitat destruction (also termed habitat loss or habitat reduction) occurs when a natural habitat is no longer able to support its native species. The organisms once living there have either moved elsewhere, or are dead, leading to a decrease in biodiversity and species numbers. Habitat destruction is in fact the leading cause of biodiversity loss and species extinction worldwide.

Humans contribute to habitat destruction through the use of natural resources, agriculture, industrial production and urbanization (urban sprawl). Other activities include mining, logging and trawling. Environmental factors can contribute to habitat destruction more indirectly. Geological processes, climate change, introduction of invasive species, ecosystem nutrient depletion, water and noise pollution are some examples. Loss of habitat can be preceded by an initial habitat fragmentation. Fragmentation and loss of habitat have become one of the most important topics of research in ecology as they are major threats to the survival of endangered species.

↑ Return to Menu

Habitat fragmentation in the context of Captive breeding

Captive breeding, also known as captive propagation, is a conservation strategy aimed at preserving endangered or threatened species by breeding them in controlled environments, such as wildlife reserves, zoos, botanic gardens, and other conservation facilities. It is sometimes employed to help species that are being threatened by the effects of human activities such as climate change, habitat loss, fragmentation, overhunting or fishing, pollution, predation, disease, and parasitism.

For many species, relatively little is known about the conditions needed for successful breeding. Information about a species' reproductive biology may be critical to the success of a captive breeding program. In some cases a captive breeding program can save a species from extinction, but for success, breeders must consider many factors—including genetic, ecological, behavioral, and ethical issues. Most successful attempts involve the cooperation and coordination of many institutions. The efforts put into captive breeding can aid in education about conservation because species in captivity are closer to the public than their wild conspecifics. These accomplishments from the continued breeding of species for generations in captivity is also aided by extensive research efforts ex-situ and in-situ.

↑ Return to Menu

Habitat fragmentation in the context of White-tailed eagle

The white-tailed eagle (Haliaeetus albicilla), sometimes known as the "sea eagle", is a large bird of prey, widely distributed across temperate Eurasia. Like all eagles, it is a member of the family Accipitridae (or accipitrids) which also includes other diurnal raptors such as hawks, kites, and harriers. One of up to eleven members in the genus Haliaeetus, which are commonly called sea eagles, it is also referred to as the white-tailed sea-eagle. Sometimes, it is known as the ern or erne (depending on spelling by sources), gray sea eagle and Eurasian sea eagle.

While found across a wide range, today breeding from as far west as Greenland and Iceland across to as far east as Hokkaido, Japan, they are often scarce and spottily distributed as a nesting species, mainly due to human activities. These have included habitat alterations and destruction of wetlands, about a hundred years of systematic persecution by humans (from the early 1800s to around World War II) followed by inadvertent poisonings and epidemics of nesting failures due to various manmade chemical pesticides and organic compounds, which have threatened eagles since roughly the 1950s and continue to be a potential concern. Due to this, the white-tailed eagle was considered endangered or extinct in several countries. Some populations have since recovered well, due to governmental protections, dedicated conservationists and naturalists protecting habitats and nesting sites, partially regulating poaching and pesticide usage, as well as careful reintroductions into parts of their former range.

↑ Return to Menu