Group 8 element in the context of "Iron group"

Play Trivia Questions online!

or

Skip to study material about Group 8 element in the context of "Iron group"

Ad spacer

⭐ Core Definition: Group 8 element

Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). "Group 8" is the modern standard designation for this group, adopted by the IUPAC in 1990. It should not be confused with "group VIIIA" in the CAS system, which is group 18 (current IUPAC), the noble gases. In the older group naming systems, this group was combined with groups 9 and 10 and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table). The elements in this group are all transition metals that lie in the d-block of the periodic table.

While groups (columns) of the periodic table are usually named after their lightest member (as in "the oxygen group" for group 16), iron group has historically been used differently; most often, it means a set of adjacent elements on period (row) 4 of the table that includes iron, such as chromium, manganese, iron, cobalt, and nickel, or only the last three, or some other set, depending on the context.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Group 8 element in the context of Iron group

In chemistry and physics, the iron group refers to elements that are in some way related to iron; mostly in period (row) 4 of the periodic table. The term has different meanings in different contexts.

In chemistry, the term is largely obsolete, but it often means iron, cobalt, and nickel, also called the iron triad;. It may sometimes refer to other elements that resemble iron in some chemical aspects, such as the stable group 8 elements (Fe, Ru, Os, Hs).

↓ Explore More Topics
In this Dossier

Group 8 element in the context of Iron

Iron is a chemical element; it has symbol Fe (from Latin ferrum 'iron') and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's outer and inner core. It is the fourth most abundant element in the Earth's crust. In its metallic state it was mainly deposited by meteorites.

Extracting usable metal from iron ores requires kilns or furnaces capable of reaching 1,500 °C (2,730 °F), about 500 °C (900 °F) higher than that required to smelt copper. Humans started to master that process in Eurasia during the 2nd millennium BC and the use of iron tools and weapons began to displace copper alloys – in some regions, only around 1200 BC. That event is considered the transition from the Bronze Age to the Iron Age. In the modern world, iron alloys, such as steel, stainless steel, cast iron and special steels, are by far the most common industrial metals, due to their mechanical properties and low cost. The iron and steel industry is thus very important economically, and iron is the cheapest metal, with a price of a few dollars per kilogram or pound.

↑ Return to Menu

Group 8 element in the context of Platinum group

The platinum-group metals (PGMs) are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block (groups 8, 9, and 10, periods 5 and 6).

The six platinum-group metals are ruthenium, rhodium, palladium, osmium, iridium, and platinum. They have similar physical and chemical properties, and tend to occur together in the same mineral deposits. However, they can be further subdivided into the iridium-group platinum-group elements (IPGEs: Os, Ir, Ru) and the palladium-group platinum-group elements (PPGEs: Rh, Pt, Pd) based on their behaviour in geological systems.

↑ Return to Menu

Group 8 element in the context of Hassium

Hassium is a synthetic chemical element; it has symbol Hs and atomic number 108. It is highly radioactive: its most stable known isotopes have half-lives of about ten seconds. One of its isotopes, Hs, has magic numbers of protons and neutrons for deformed nuclei, giving it greater stability against spontaneous fission. Hassium is a superheavy element; it has been produced in a laboratory in very small quantities by fusing heavy nuclei with lighter ones. Natural occurrences of hassium have been hypothesized but never found.

In the periodic table, hassium is a transactinide element, a member of period 7 and group 8; it is thus the sixth member of the 6d series of transition metals. Chemistry experiments have confirmed that hassium behaves as the heavier homologue to osmium, reacting readily with oxygen to form a volatile tetroxide. The chemical properties of hassium have been only partly characterized, but they compare well with the chemistry of the other group 8 elements.

↑ Return to Menu