Group (mathematics) in the context of Product (category theory)


Group (mathematics) in the context of Product (category theory)

Group (mathematics) Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Group (mathematics) in the context of "Product (category theory)"


⭐ Core Definition: Group (mathematics)

In mathematics, a group is a set with an operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition operation form a group.

The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics.

↓ Menu
HINT:

In this Dossier

Group (mathematics) in the context of Hyperplane

In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

Most commonly, the ambient space is n-dimensional Euclidean space, in which case the hyperplanes are the (n − 1)-dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion (geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces.

View the full Wikipedia page for Hyperplane
↑ Return to Menu

Group (mathematics) in the context of Algebraic operation

In mathematics, a basic algebraic operation is a mathematical operation similar to any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). The operations of elementary algebra may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields.

An algebraic operation on a set may be defined more formally as a function that maps to the tuples of a given length of elements of . The length of the tuples is called the arity of the operation, and each member of the tuple is called an operand. The most common case is the case of arity two, where the operation is called a binary operation and the operands form an ordered pair. A unary operation is an operation of arity one that has only one operand; for example, the square root. An example of a ternary operation (arity three) is the triple product.

View the full Wikipedia page for Algebraic operation
↑ Return to Menu

Group (mathematics) in the context of Mathematical structure

In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.

A partial list of possible structures is measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, graphs, events, differential structures, categories, setoids, and equivalence relations.

View the full Wikipedia page for Mathematical structure
↑ Return to Menu

Group (mathematics) in the context of Symmetry group

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure.

View the full Wikipedia page for Symmetry group
↑ Return to Menu

Group (mathematics) in the context of Transitive group action

In mathematics, a group action of a group on a set is a group homomorphism from to some group (under function composition) of functions from to itself. It is said that acts on .

Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles.

View the full Wikipedia page for Transitive group action
↑ Return to Menu

Group (mathematics) in the context of Abelian group

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel.

The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified.

View the full Wikipedia page for Abelian group
↑ Return to Menu

Group (mathematics) in the context of Combination puzzle

A combination puzzle, also known as a sequential move puzzle, is a puzzle which consists of a set of pieces which can be manipulated into different combinations by a group of operations. Many such puzzles are mechanical puzzles of polyhedral shape, consisting of multiple layers of pieces along each axis which can rotate independently of each other. Collectively known as twisty puzzles, the archetype of this kind of puzzle is the Rubik's Cube. Each rotating side is usually marked with different colours, intended to be scrambled, then solved by a sequence of moves that sort the facets by colour. Generally, combination puzzles also include mathematically defined examples that have not been, or are impossible to, physically construct.

View the full Wikipedia page for Combination puzzle
↑ Return to Menu

Group (mathematics) in the context of Generating set of a group

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.

In other words, if is a subset of a group , then , the subgroup generated by , is the smallest subgroup of containing every element of , which is equal to the intersection over all subgroups containing the elements of ; equivalently, is the subgroup of all elements of that can be expressed as the finite product of elements in and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.)

View the full Wikipedia page for Generating set of a group
↑ Return to Menu

Group (mathematics) in the context of Fundamental domain

Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits.

There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral. The images of a chosen fundamental domain under the group action then tile the space. One general construction of fundamental domains uses Voronoi cells.

View the full Wikipedia page for Fundamental domain
↑ Return to Menu

Group (mathematics) in the context of Rotation (mathematics)

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

Mathematically, a rotation is a map. All rotations about a fixed point form a group under composition called the rotation group (of a particular space). But in mechanics and, more generally, in physics, this concept is frequently understood as a coordinate transformation (importantly, a transformation of an orthonormal basis), because for any motion of a body there is an inverse transformation which if applied to the frame of reference results in the body being at the same coordinates. For example, in two dimensions rotating a body clockwise about a point keeping the axes fixed is equivalent to rotating the axes counterclockwise about the same point while the body is kept fixed. These two types of rotation are called active and passive transformations.

View the full Wikipedia page for Rotation (mathematics)
↑ Return to Menu

Group (mathematics) in the context of Subgroup

In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.

Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted HG, read as "H is a subgroup of G".

View the full Wikipedia page for Subgroup
↑ Return to Menu

Group (mathematics) in the context of Quantum operator

An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory. They play a central role in describing observables (measurable quantities like energy, momentum, etc.).

View the full Wikipedia page for Quantum operator
↑ Return to Menu

Group (mathematics) in the context of Automorphism

In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object.

View the full Wikipedia page for Automorphism
↑ Return to Menu

Group (mathematics) in the context of Lattice graph

In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space , forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense.

Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid. Moreover, these terms are also commonly used for a finite section of the infinite graph, as in "an 8 × 8 square grid".

View the full Wikipedia page for Lattice graph
↑ Return to Menu

Group (mathematics) in the context of Abstract algebra

In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in pedagogy.

Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory gives a unified framework to study properties and constructions that are similar for various structures.

View the full Wikipedia page for Abstract algebra
↑ Return to Menu

Group (mathematics) in the context of Universal algebra

Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures.For instance, rather than considering groups or rings as the object of study—this is the subject of group theory and ring theory— in universal algebra, the object of study is the possible types of algebraic structures and their relationships.

View the full Wikipedia page for Universal algebra
↑ Return to Menu

Group (mathematics) in the context of Group representation

In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.

In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.

View the full Wikipedia page for Group representation
↑ Return to Menu

Group (mathematics) in the context of Embedding

In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

When some object is said to be embedded in another object , the embedding is given by some injective and structure-preserving map . The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which and are instances. In the terminology of category theory, a structure-preserving map is called a morphism.

View the full Wikipedia page for Embedding
↑ Return to Menu