Gregory Chaitin in the context of Metamathematics


Gregory Chaitin in the context of Metamathematics

Gregory Chaitin Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Gregory Chaitin in the context of "Metamathematics"


⭐ Core Definition: Gregory Chaitin

Gregory John Chaitin (/ˈtɪn/ CHY-tin; born 25 June 1947) is an Argentine-American mathematician and computer scientist. Beginning in the late 1960s, Chaitin made contributions to algorithmic information theory and metamathematics, in particular a computer-theoretic result equivalent to Gödel's incompleteness theorem. He is considered to be one of the founders of what is today known as algorithmic (Solomonoff–Kolmogorov–Chaitin, Kolmogorov or program-size) complexity together with Andrei Kolmogorov and Ray Solomonoff. Along with the works of e.g. Solomonoff, Kolmogorov, Martin-Löf, and Leonid Levin, algorithmic information theory became a foundational part of theoretical computer science, information theory, and mathematical logic. It is a common subject in several computer science curricula. Besides computer scientists, Chaitin's work draws attention of many philosophers and mathematicians to fundamental problems in mathematical creativity and digital philosophy.

↓ Menu
HINT:

In this Dossier

Gregory Chaitin in the context of Algorithmic information theory

Algorithmic information theory (AIT) is a branch of theoretical computer science that concerns itself with the relationship between computation and information of computably generated objects (as opposed to stochastically generated), such as strings or any other data structure. In other words, it is shown within algorithmic information theory that computational incompressibility "mimics" (except for a constant that only depends on the chosen universal programming language) the relations or inequalities found in information theory. According to Gregory Chaitin, it is "the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously."

Besides the formalization of a universal measure for irreducible information content of computably generated objects, some main achievements of AIT were to show that: in fact algorithmic complexity follows (in the self-delimited case) the same inequalities (except for a constant) that entropy does, as in classical information theory; randomness is incompressibility; and, within the realm of randomly generated software, the probability of occurrence of any data structure is of the order of the shortest program that generates it when running on a universal machine.

View the full Wikipedia page for Algorithmic information theory
↑ Return to Menu