Gravitational lensing in the context of "Dark matter"

⭐ In the context of dark matter, gravitational lensing is considered...

Ad spacer

⭐ Core Definition: Gravitational lensing

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity. If light is treated as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

Orest Khvolson (1924) and Frantisek Link (1936) are generally credited with being the first to discuss the effect in print, but it is more commonly associated with Einstein, who made unpublished calculations on it in 1912 and published an article on the subject in 1936.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Gravitational lensing in the context of Dark matter

In astronomy and cosmology, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravitational effects that cannot be explained by general relativity unless more matter is present than can be observed. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies. Dark matter is thought to serve as gravitational scaffolding for cosmic structures.After the Big Bang, dark matter clumped into blobs along narrow filaments with superclusters of galaxies forming a cosmic web at scales on which entire galaxies appear like tiny particles.

↓ Explore More Topics
In this Dossier

Gravitational lensing in the context of Proper motion

Proper motion is the angular speed of a celestial object, such as a star, as it moves across the sky. It is an astrometric measure, giving an object's change in angular position over time relative to the center of mass of the Solar System. This parameter is measured relative to the distant stars or a stable reference such as the International Celestial Reference Frame (ICRF). Patterns in proper motion reveal larger structures like stellar streams, the general rotation of the Milky Way disk, and the random motions of stars in the Galactic halo.

The components for proper motion in the equatorial coordinate system (of a given epoch, often J2000.0) are given in the direction of right ascension (μα) and of declination (μδ). Their combined value is computed as the total proper motion (μ). It has dimensions of angle per time, typically arcseconds per year or milliarcseconds per year.

↑ Return to Menu

Gravitational lensing in the context of Binary black hole

A binary black hole (BBH), or black hole binary, is an astronomical object consisting of two black holes in close orbit around each other. Like black holes themselves, binary black hole systems are classified as either stellar-mass—involving remnants of high-mass binary star systems or formed by dynamic processes and mutual capture—or supermassive, black hole systems believed to arise from galactic mergers.

The existence of stellar-mass binary black holes was directly confirmed by gravitational wave observation in September 2015. Supermassive binary black hole candidates have been proposed based on indirect evidence, but await observational confirmation.

↑ Return to Menu