Grams in the context of "Molecular mass"

Play Trivia Questions online!

or

Skip to study material about Grams in the context of "Molecular mass"

Ad spacer

⭐ Core Definition: Grams

The gram (originally gramme; SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one thousandth of a kilogram.

Originally defined in 1795 as "the absolute weight of a volume of pure water equal to the cube of the hundredth part of a metre [1 cm], and at the temperature of melting ice", the defining temperature (0 °C) was later changed to the temperature of maximum density of water (approximately 4 °C). Subsequent redefinitions agree with this original definition to within 30 parts per million (0.003%), with the maximum density of water remaining very close to 1 g/cm, as shown by modern measurements.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Grams in the context of Molecular mass

The molecular mass (m) is the mass of a given molecule, often expressed in units of daltons (Da). Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The derived quantity relative molecular mass is the unitless ratio of the mass of a molecule to the atomic mass constant (which is equal to one dalton).

The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mole (g/mol). That makes the molar mass an average of many particles or molecules (weighted by abundance of the isotopes), and the molecular mass the mass of one specific particle or molecule. The molar mass is usually the more appropriate quantity when dealing with macroscopic (weigh-able) quantities of a substance.

↓ Explore More Topics
In this Dossier

Grams in the context of G-force

The g-force or gravitational force equivalent is a mass-specific force (force per unit mass), expressed in units of standard gravity (symbol g or g0, not to be confused with "g", the symbol for grams).It is used for sustained accelerations that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 g, equaling the conventional value of gravitational acceleration on Earth, about 9.8 m/s.More transient acceleration, accompanied with significant jerk, is called shock.

When the g-force is produced by the surface of one object being pushed by the surface of another object, the reaction force to this push produces an equal and opposite force for every unit of each object's mass. The types of forces involved are transmitted through objects by interior mechanical stresses. Gravitational acceleration is one cause of an object's acceleration in relation to free fall.

↑ Return to Menu