Gondwana in the context of Paleotropics


Gondwana in the context of Paleotropics

Gondwana Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Gondwana in the context of "Paleotropics"


⭐ Core Definition: Gondwana

Gondwana (/ɡɒnˈdwɑːnə/ gond-WAHN-ə; Sanskrit: [goːɳɖɐʋɐnɐ]) was a large landmass, sometimes referred to as a supercontinent. The remnants of Gondwana make up around two-thirds of today's continental area, including South America, Africa, Antarctica, Australia, Zealandia, Arabia, and the Indian subcontinent.

Gondwana was formed by the accretion of several cratons (large stable blocks of the Earth's crust), beginning c. 800 to 650 Ma with the East African Orogeny, the collision of India and Madagascar with East Africa, and culminating in c. 600 to 530 Ma with the overlapping Brasiliano and Kuunga orogenies, the collision of South America with Africa, and the addition of Australia and Antarctica, respectively. Eventually, Gondwana became the largest piece of continental crust of the Paleozoic Era, covering an area of some 100,000,000 km (39,000,000 sq mi), about one-fifth of the Earth's surface. It fused with Laurasia during the Carboniferous to form Pangaea.

↓ Menu
HINT:

In this Dossier

Gondwana in the context of Madagascar

Madagascar, officially the Republic of Madagascar, is an island country in the Indian Ocean that includes the island of Madagascar and numerous smaller peripheral islands. Lying off the southeastern coast of Africa, it is the world's fourth-largest island, the second-largest island country, and the 46th-largest country overall. Its capital and largest city is Antananarivo.

Following the prehistoric breakup of the supercontinent Gondwana, Madagascar split from Africa during the Early Jurassic period, around 180 million years ago, and separated from the Indian subcontinent approximately 90 million years ago. This isolation allowed native plants and animals to evolve in relative seclusion; as a result, Madagascar is a biodiversity hotspot and one of the world's 17 megadiverse countries, with over 90% of its wildlife being endemic. The island has a subtropical to tropical maritime climate. Madagascar was first permanently settled during or before the mid-first millennium CE (roughly 500 to 700) by Austronesian peoples, presumably arriving on outrigger canoes from present-day Indonesia. These were joined around the ninth century by Bantu groups crossing the Mozambique Channel from East Africa. Other groups continued to settle on Madagascar over time, each one making lasting contributions to Malagasy cultural life. Consequently, there are 18 or more classified peoples of Madagascar, the most numerous being the Merina of the central highlands.

View the full Wikipedia page for Madagascar
↑ Return to Menu

Gondwana in the context of Zealandia

Zealandia (pronounced /zˈlændiə/), also known as Te Riu-a-Māui (Māori) or Tasmantis (from Tasman Sea), is an almost entirely submerged mass of continental crust in Oceania that subsided after breaking away from Gondwana 83–79 million years ago. It has been described variously as a submerged continent, continental fragment, and microcontinent. The name and concept for Zealandia was proposed by Bruce Luyendyk in 1995, and satellite imagery shows it to be almost the size of Australia. A 2021 study suggests Zealandia is over a billion years old, about twice as old as geologists previously thought.

By approximately 23 million years ago, the landmass may have been completely submerged. Today, most of the landmass (94%) remains submerged beneath the Pacific Ocean. New Zealand is the largest part of Zealandia that is above sea level, followed by New Caledonia.

View the full Wikipedia page for Zealandia
↑ Return to Menu

Gondwana in the context of Antarctic flora

Antarctic flora are a distinct community of vascular plants which evolved millions of years ago on the supercontinent of Gondwana. In 2025, species of Antarctica flora reside on several now separated areas of the Southern Hemisphere, including southern South America, southernmost Africa, New Zealand, Australia, and New Caledonia. Joseph Dalton Hooker (1817 – 1911) was the first to notice similarities in the flora and speculated that Antarctica had served as either a source or a transitional point, and that land masses now separated might formerly have been adjacent.

Based on the similarities in their flora, botanist Ronald D'Oyley Good identified a separate Antarctic Floristic Kingdom that included southern South America, New Zealand, and some southern island groups. In addition, Australia was determined to be its own floristic kingdom because of the influx of tropical Eurasian flora that had mostly supplanted the Antarctic flora and included New Guinea and New Caledonia in the Paleotropical floristic kingdom.

View the full Wikipedia page for Antarctic flora
↑ Return to Menu

Gondwana in the context of Indian plate

The Indian plate (or India plate) is a minor tectonic plate straddling the equator in the Eastern Hemisphere. Originally a part of the ancient continent of Gondwana, the Indian plate broke away from the other fragments of Gondwana 100 million years ago and began moving north, carrying Insular India with it. It was once fused with the adjacent Australian plate to form a single Indo-Australian plate, but recent studies suggest that India and Australia may have been separate plates for at least 3 million years. The Indian plate includes most of modern South Asia (the Indian subcontinent) and a portion of the basin under the Indian Ocean, including parts of South China, Indonesian islands, and extending up to but not including Ladakh, Kohistan, and Balochistan in Pakistan.

View the full Wikipedia page for Indian plate
↑ Return to Menu

Gondwana in the context of Elephant bird

Elephant birds are extinct flightless birds belonging to the order Aepyornithiformes that were native to the island of Madagascar. They are thought to have gone extinct around 1000 CE, likely as a result of human activity. Elephant birds comprised three species, one in the genus Mullerornis, and two in Aepyornis. Aepyornis maximus is possibly the largest bird to have ever lived, with their eggs being the largest known for any amniote. Elephant birds are palaeognaths (whose flightless representatives are often known as ratites), and their closest living relatives are kiwi (found only in New Zealand), suggesting that ratites did not diversify by vicariance during the breakup of Gondwana but instead convergently evolved flightlessness from ancestors that dispersed more recently by flying.

View the full Wikipedia page for Elephant bird
↑ Return to Menu

Gondwana in the context of Central American Seaway

The Central American Seaway (also known as the Panamanic Seaway, Inter-American Seaway and Proto-Caribbean Seaway) was a prehistoric body of water that once connected the Pacific Ocean to the Atlantic Ocean, separating North America from South America. It formed during the Jurassic (200–154 Ma) during the initial breakup of the supercontinent Pangaea into Laurasia and Gondwana, forming a mediterranean sea between the Panthalassia and Tethys Ocean, and finally closed when the Isthmus of Panama was formed by volcanic activity in the late Pliocene (2.76–2.54 Ma). The modern-day remnants of the seaway are the Gulf of Mexico, Caribbean Sea and the Central Atlantic region around the Sargasso Sea.

The closure of the Central American Seaway had tremendous effects on oceanic circulation and the biogeography of the adjacent seas, isolating many species and triggering speciation and diversification of tropical and sub-tropical marine fauna. The inflow of nutrient-rich water of deep Pacific origin into the Caribbean was blocked and so local species had to adapt to an environment of lower productivity. It had an even larger impact on terrestrial life. The seaway had isolated South America for much of the Cenozoic, which allowed the evolution of a wholly unique diverse mammalian fauna there. When it closed, a faunal exchange with North America ensued and led to the extinction of many of the native South American forms.

View the full Wikipedia page for Central American Seaway
↑ Return to Menu

Gondwana in the context of Cambrian

The Cambrian ( /ˈkæmbri.ən, ˈkm-/ KAM-bree-ən, KAYM-) is the first geological period of the Paleozoic Era, and the Phanerozoic Eon. The Cambrian lasted 51.95 million years from the end of the preceding Ediacaran period 538.8 Ma (million years ago) to the beginning of the Ordovician Period 486.85 Ma.

Most of the continents were located in the southern hemisphere surrounded by the vast Panthalassa Ocean. The assembly of Gondwana during the Ediacaran and early Cambrian led to the development of new convergent plate boundaries and continental-margin arc magmatism along its margins that helped drive up global temperatures. Laurentia lay across the equator, separated from Gondwana by the opening Iapetus Ocean.

View the full Wikipedia page for Cambrian
↑ Return to Menu

Gondwana in the context of Pangaea

Pangaea or Pangea (/pænˈə/ pan-JEE) was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous period approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and was the first to be reconstructed by geologists.

View the full Wikipedia page for Pangaea
↑ Return to Menu

Gondwana in the context of Supercontinent

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

Moving under the forces of plate tectonics, supercontinents have assembled and dispersed multiple times in the geologic past. According to modern definitions, a supercontinent does not exist today; the closest is the current Afro-Eurasian landmass, which covers approximately 57% of Earth's total land area. The last period in which the continental landmasses were near to one another was 336 to 175 million years ago, forming the supercontinent Pangaea. The positions of continents have been accurately determined back to the early Jurassic, shortly before the breakup of Pangaea. Pangaea's predecessor Gondwana is not considered a supercontinent under the first definition since the landmasses of Baltica, Laurentia and Siberia were separate at the time.

View the full Wikipedia page for Supercontinent
↑ Return to Menu

Gondwana in the context of Ordovician–Silurian extinction events

The Late Ordovician mass extinction (LOME), sometimes known as the end-Ordovician mass extinction or the Ordovician–Silurian extinction, is the first of the "big five" major mass extinction events in Earth's history, occurring roughly 445 million years ago (Ma). It is often considered to be the second-largest-known extinction event just behind the end-Permian mass extinction, in terms of the percentage of genera that became extinct. Extinction was global during this interval, eliminating 49–60% of marine genera and nearly 85% of marine species. Under most tabulations, only the Permian–Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves and graptolites. Despite its taxonomic severity, the Late Ordovician mass extinction did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.

The Late Ordovician mass extinction is traditionally considered to occur in two distinct pulses. The first pulse (interval), known as LOMEI-1, began at the boundary between the Katian and Hirnantian stages of the Late Ordovician epoch. This extinction pulse is typically attributed to the Late Ordovician glaciation, which abruptly expanded over Gondwana at the beginning of the Hirnantian and shifted the Earth from a greenhouse to icehouse climate. Cooling and a falling sea level brought on by the glaciation led to habitat loss for many organisms along the continental shelves, especially endemic taxa with restricted temperature tolerance and latitudinal range. During this extinction pulse, there were also several marked changes in biologically responsive carbon and oxygen isotopes. Marine life partially rediversified during the cold period and a new cold-water ecosystem, the "Hirnantia fauna", was established.

View the full Wikipedia page for Ordovician–Silurian extinction events
↑ Return to Menu

Gondwana in the context of Tethys Ocean

The Tethys Ocean (/ˈtθɪs, ˈtɛ-/ TEETH-iss, TETH-; Greek: Τηθύς Tēthús), also called the Tethys Sea or the Neo-Tethys, was a prehistoric ocean during much of the Mesozoic Era and early-mid Cenozoic Era. It was the predecessor to the modern Indian Ocean, the Mediterranean Sea, and the Eurasian inland marine basins (primarily represented today by the Black Sea and Caspian Sea).

During the early Mesozoic, as Pangaea broke up, the designation “Tethys Ocean” refers to the ocean located between the ancient continents of Gondwana and Laurasia. After the opening of the Indian and Atlantic oceans during the Cretaceous Period and the breakup of these continents over the same period, it refers to the ocean bordered by the continents of Africa, Eurasia, India, and Australasia. During the early-mid Cenozoic, the Indian, African, Australian and Arabian plates moved north and collided with the Eurasian plate, which created new borders to the ocean, a land barrier to the flow of currents between the Indian and Mediterranean basins, and the orogenies of the Alpide belt (including the Alps, Himalayas, Zagros, and Caucasus Mountains). All of these geological events, in addition to a drop in sea level from Antarctic glaciation, brought an end to the Tethys as it previously existed, fragmenting it into the Indian Ocean, the Mediterranean Sea, and the Paratethys.

View the full Wikipedia page for Tethys Ocean
↑ Return to Menu

Gondwana in the context of Wildlife of Madagascar

The composition of Madagascar's wildlife reflects the fact that the island has been isolated for about 88 million years. The prehistoric breakup of the supercontinent Gondwana separated the Madagascar-Antarctica-India landmass from the Africa-South America landmass around 135 million years ago. Madagascar later split from India about 88 million years ago, allowing plants and animals on the island to evolve in relative isolation.

As a result of the island's long isolation from neighboring continents, Madagascar is home to an abundance of plants and animals found nowhere else on Earth. Approximately 90 percent of all plant and animal species found in Madagascar are endemic, including the lemurs (a type of strepsirrhine primate), the carnivorous fossa and many birds. This distinctive ecology has led some ecologists to refer to Madagascar as the "eighth continent", and the island has been classified by Conservation International as a biodiversity hotspot. As recent as 2021, the "smallest reptile on earth" was also found in Madagascar, Brookesia nana, also known as the nano-chameleon.

View the full Wikipedia page for Wildlife of Madagascar
↑ Return to Menu

Gondwana in the context of Deccan

The Deccan Plateau (/ˈdɛkən/ DEK-ən ) is a geographic formation that extends over an area of 422,000 km (163,000 sq mi) on the southern part of the Indian peninsula. It stretches from the Satpura and Vindhya Ranges in the north to the northern fringes of Tamil Nadu in the south. It is bound by the mountain ranges of the Western Ghats and the Eastern Ghats on the sides, which separate the region from the Western and Eastern Coastal Plains respectively. It covers most of the Indian States of Maharashtra, Karnataka, Telangana and Andhra Pradesh excluding the coastal regions, and minor portions of Tamil Nadu and Kerala.

The plateau is marked by rocky terrain with an average elevation of about 600 m (2,000 ft). It is subdivided into Maharashtra Plateau, Karnataka Plateau, and Rayalaseema and Telangana Plateau. The Deccan Traps in the northwest were formed by multiple layers of igneous rock deposited by basaltic lava flows following a massive volcanic eruption occurred at the end of the Cretaceous period (66 mya). The underlying bed consists of granite and sedimentary rocks formed during the Precambrian era and the formation of Gondwana.

View the full Wikipedia page for Deccan
↑ Return to Menu

Gondwana in the context of Permian

The Permian (/ˈpɜːrmi.ən/ PUR-mee-ən) is a geologic period and stratigraphic system which spans 47 million years, from the end of the Carboniferous Period 298.9 Ma (million years ago) to the beginning of the Triassic Period 251.902 Ma. It is the sixth and last period of the Paleozoic Era; the following Triassic Period belongs to the Mesozoic Era. The concept of the Permian was introduced in 1841 by geologist Sir Roderick Murchison, who named it after the region of Perm in Russia.

The Permian witnessed the diversification of the two groups of amniotes, the synapsids and the sauropsids (reptiles). The world at the time was dominated by the supercontinent Pangaea, which had formed due to the collision of Euramerica and Gondwana during the Carboniferous. Pangaea was surrounded by the superocean Panthalassa. The Carboniferous rainforest collapse left behind vast regions of desert within the continental interior. Amniotes, which could better cope with these drier conditions, rose to dominance in place of their amphibian ancestors.

View the full Wikipedia page for Permian
↑ Return to Menu

Gondwana in the context of Continental collision

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

Continental collision is not an instantaneous event, but may take several tens of millions of years before the faulting and folding caused by collisions stops. The collision between India and Asia has been going on for about 50 million years already and shows no signs of abating. Collision between East and West Gondwana to form the East African Orogen took about 100 million years from beginning (610 Ma) to end (510 Ma). The collision between Gondwana and Laurasia to form Pangea occurred in a relatively brief interval, about 50 million years long.

View the full Wikipedia page for Continental collision
↑ Return to Menu

Gondwana in the context of Western Ghats

The Western Ghats, also known as the Sahyadri, is a mountain range that stretches 1,600 km (990 mi) along the western coast of the Indian peninsula. Covering an area of 160,000 km (62,000 sq mi), it traverses the Indian states of Gujarat, Maharashtra, Goa, Karnataka, Kerala, and Tamil Nadu. The range forms an almost continuous chain of mountains along the western edge of the Deccan Plateau, from the Tapti River to Swamithoppe in Kanyakumari district at the southern tip of the Indian peninsula. The Western Ghats meet with the Eastern Ghats at Nilgiris before continuing south.

Geologic evidence indicates that the mountains were formed during the break-up of the supercontinent of Gondwana. The mountains arose along the west coast of India somewhere in the late Jurassic and early Cretaceous periods when India separated from the African continent. The mountains can be roughly divided into three parts: the northern section with an elevation ranging from 900–1,500 m (3,000–4,900 ft), the middle section starting south of Goa with a lower elevation of less than 900 m (3,000 ft), and the southern section where the altitude rises again. The Western Ghats have several peaks that rise above 2,000 m (6,600 ft), with Anamudi (2,695 m (8,842 ft)) being the highest peak. The average elevation is around 1,200 m (3,900 ft).

View the full Wikipedia page for Western Ghats
↑ Return to Menu

Gondwana in the context of Karoo-Ferrar

The Karoo and Ferrar large igneous provinces (LIPs), in Southern Africa and Antarctica respectively, collectively known as the Karoo-Ferrar, Gondwana, or Southeast African LIP, are associated with the initial break-up of the Gondwana supercontinent at c. 183 Ma.Its flood basalt mostly covers South Africa and Antarctica, but portions extend further into southern Africa and into South America, India, Australia and New Zealand.

Karoo-Ferrar formed just prior to the breakup of Gondwana in the Lower Jurassic epoch, about 183 million years ago; this timing corresponds to the early Toarcian anoxic event and the Pliensbachian-Toarcian extinction. It covered about 3 million km. The total original volume of the flow, which extends over a distance in excess of 6000 km (4000 km in Antarctica alone), was in excess of 2.5 million km (2.5 million cubic kilometres).

View the full Wikipedia page for Karoo-Ferrar
↑ Return to Menu

Gondwana in the context of Hercynian Europe

The Variscan orogeny or Hercynian orogeny was a geologic mountain-building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangaea. It remains visible today as a series of isolated massifs, including the Ardennes, Bohemian Massif, Vosges-Black Forest, Armorican Massif, Cornubian Massif, Massif Central, and Iberian System. These are interspersed with Mesozoic and Cenozoic sedimentary basins. The chain also crops out in southern Ireland and was later incorporated into the Alpine orogeny (external crystalline massifs) and Pyrenean orogeny. These ancient massifs form the pre-Permian basement of western and Central Europe, part of a larger mountain system stretching from the Ural Mountains in Russia to the Appalachian Mountains in North America.

The chain originated from the convergence and collision of three continental masses: the microcontinent Armorica and the supercontinents Protogondwana and Laurussia (a union of Laurentia and Baltica from the Caledonian orogeny). This convergence contributed to the formation of the supercontinent Pangaea.

View the full Wikipedia page for Hercynian Europe
↑ Return to Menu