Bryozoa in the context of "Ordovician–Silurian extinction events"

Play Trivia Questions online!

or

Skip to study material about Bryozoa in the context of "Ordovician–Silurian extinction events"

Ad spacer

⭐ Core Definition: Bryozoa

Bryozoa (also known as the Polyzoa, Ectoprocta or commonly as moss animals) are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about 0.5 millimetres (164 in) long, they have a special feeding structure called a lophophore, a "crown" of tentacles used for filter feeding. The bryozoans are classified as the marine bryozoans (Stenolaemata), freshwater bryozoans (Phylactolaemata), and mostly-marine bryozoans (Gymnolaemata), a few members of which prefer brackish water. Most marine bryozoans live in tropical waters, but a few are found in oceanic trenches and polar waters. 5,869 living species of bryozoa are known. Originally all of the crown group Bryozoa were colonial, but as an adaptation to a mesopsammal (interstitial spaces in marine sand) life or to deep-sea habitats, secondarily solitary forms have since evolved. Solitary species have been described in four genera: Aethozooides, Aethozoon, Franzenella, and Monobryozoon, the latter having a statocyst-like organ with a supposed excretory function.

The terms Polyzoa and Bryozoa were introduced in 1830 and 1831, respectively. Soon after it was named, another group of animals was discovered whose filtering mechanism looked similar, so it was included in Bryozoa until 1869, when the two groups were noted to be very different internally. The new group was given the name "Entoprocta", while the original Bryozoa were called "Ectoprocta". Disagreements about terminology persisted well into the 20th century, but "Bryozoa" is now the generally accepted term.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Bryozoa in the context of Ordovician–Silurian extinction events

The Late Ordovician mass extinction (LOME), sometimes known as the end-Ordovician mass extinction or the Ordovician–Silurian extinction, is the first of the "big five" major mass extinction events in Earth's history, occurring roughly 445 million years ago (Ma). It is often considered to be the second-largest-known extinction event just behind the end-Permian mass extinction, in terms of the percentage of genera that became extinct. Extinction was global during this interval, eliminating 49–60% of marine genera and nearly 85% of marine species. Under most tabulations, only the Permian–Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves and graptolites. Despite its taxonomic severity, the Late Ordovician mass extinction did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.

The Late Ordovician mass extinction is traditionally considered to occur in two distinct pulses. The first pulse (interval), known as LOMEI-1, began at the boundary between the Katian and Hirnantian stages of the Late Ordovician epoch. This extinction pulse is typically attributed to the Late Ordovician glaciation, which abruptly expanded over Gondwana at the beginning of the Hirnantian and shifted the Earth from a greenhouse to icehouse climate. Cooling and a falling sea level brought on by the glaciation led to habitat loss for many organisms along the continental shelves, especially endemic taxa with restricted temperature tolerance and latitudinal range. During this extinction pulse, there were also several marked changes in biologically responsive carbon and oxygen isotopes. Marine life partially rediversified during the cold period and a new cold-water ecosystem, the "Hirnantia fauna", was established.

↓ Explore More Topics
In this Dossier

Bryozoa in the context of Zooid

A zooid or zoöid /ˈz.ɔɪd/ is an animal that is part of a colonial animal. This lifestyle has been adopted by animals from separate unrelated taxa. Zooids are multicellular; their structure is similar to that of other solitary animals. The zooids can either be directly connected by tissue (e.g. corals, Catenulida, Siphonophorae, Pyrosome or Ectoprocta) or share a common exoskeleton (e.g. Bryozoa or Pterobranchia). The colonial organism as a whole is alternatively called a zoon /ˈz.ɒn/, plural zoa (from Ancient Greek zôion ζῷον meaning 'animal'; plural zôia, ζῷα) or compound animal.

Zooids can exhibit polymorphism. For instance, extant bryozoans may have zooids adapted for different functions, such as feeding, anchoring the colony to the substratum and for brooding embryos. However, fossil bryozoans are only known by the colony structures that the zooids formed during life.

↑ Return to Menu

Bryozoa in the context of Triassic–Jurassic extinction event

The Triassic–Jurassic (Tr-J) extinction event (TJME), often called the end-Triassic extinction, marks the boundary between the Triassic and Jurassic periods, 201.4 million years ago. It represents one of five major extinction events during the Phanerozoic, profoundly affecting life on land and in the oceans.

In the seas, about 23–34% of marine genera disappeared; corals, bivalves, brachiopods, bryozoans, and radiolarians suffered severe losses of diversity and conodonts were completely wiped out, while marine vertebrates, gastropods, and benthic foraminifera were relatively unaffected. On land, all archosauromorph reptiles other than crocodylomorphs, dinosaurs, and pterosaurs became extinct. Crocodylomorphs, dinosaurs, pterosaurs, and mammals were left largely untouched, allowing them to become the dominant land animals for the next 135 million years. Plants were likewise significantly affected by the crisis, with floral communities undergoing radical ecological restructuring across the extinction event.

↑ Return to Menu

Bryozoa in the context of Myxozoa

Myxozoa (etymology: Greek: μύξα myxa "slime" or "mucus" + thematic vowel o + ζῷον zoon "animal") is a subphylum of aquatic cnidarian animals – all obligate parasites. It contains the smallest animals ever known to have lived. Over 2,180 species have been described and some estimates have suggested at least 30,000 undiscovered species. Many have a two-host lifecycle, involving a fish and an annelid worm or a bryozoan. The average size of a myxosporean spore usually ranges from 10 μm to 20 μm, whereas that of a malacosporean (a subclade of the Myxozoa) spore can be up to 2 mm. Myxozoans can live in both freshwater and marine habitats.

Myxozoans are highly derived cnidarians that have undergone dramatic evolution from a free swimming, self-sufficient jellyfish-like creature into their current form of obligate parasites composed of very few cells. As myxozoans evolved into microscopic parasites, they lost many genes responsible for multicellular development, coordination, cell–cell communication, and even, in some cases, aerobic respiration. The genomes of some myxozoans are now among the smallest genomes of any known animal species.

↑ Return to Menu

Bryozoa in the context of Lophotrochozoa

Lophotrochozoa (/ləˌfɒtrkˈzə/, "crest/wheel animals") is a clade of protostome animals within the Spiralia. The taxon was established as a monophyletic group based on molecular evidence. The clade includes animals like annelids, molluscs, bryozoans, and brachiopods.

↑ Return to Menu

Bryozoa in the context of Myxosporea

Myxosporea is a class of microscopic animals, all of whom are parasites. They belong to the Myxozoa clade within Cnidaria. They have a complex life cycle that comprises vegetative forms in two hosts—one an aquatic invertebrate (generally an annelid but sometimes a bryozoan) and the other an ectothermic vertebrate, usually a fish. Each parasitized host releases a different type of spore. The two forms of spore are so different in appearance that until relatively recently they were treated as belonging to different classes within the Myxozoa.

↑ Return to Menu

Bryozoa in the context of Carnian pluvial episode

The Carnian pluvial episode (CPE), often called the Carnian pluvial event, was a period of major change in global climate that coincided with significant changes in Earth's biota both in the sea and on land. It occurred during the latter part of the Carnian Stage, the first subdivision of the Late Triassic Epoch, and lasted for perhaps 1–2 million years (around 234–232 million years ago). Volcanic activity off the coast of North America led to global warming and increased rainfall on land, alongside a reduction of carbonate platforms in the oceans. Pluvial means "of or relating to rain; characterized by much rain, rainy."

The CPE corresponds to a significant episode in the evolution and diversification of many taxa that are important today. The earliest dinosaurs (which include the ancestors of birds), lepidosaurs (the ancestors of modern-day lizards, snakes, and the tuatara) and potentially mammaliaforms (ancestors of mammals) all diversified during the event. In the marine realm it saw the first appearance among the microplankton of coccoliths and dinoflagellates, with the latter linked to the rapid diversification of scleractinian corals through the establishment of symbiotic zooxanthellae within them. The CPE also saw the extinction of many aquatic invertebrate species, especially among ammonoids, bryozoans, and crinoids.

↑ Return to Menu