Geologic eon in the context of "Geologic record"

Play Trivia Questions online!

or

Skip to study material about Geologic eon in the context of "Geologic record"

Ad spacer

⭐ Core Definition: Geologic eon

The geologic time scale or geological time scale (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardised international units of geological time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geological time. The chronostratigraphic divisions are in turn used to define geochronologic units.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Geologic eon in the context of Archean

The Archean (IPA: /ɑːrˈkən/ ar-KEE-ən, also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history, preceded by the Hadean Eon and followed by the Proterozoic and the Phanerozoic. The Archean represents the time period from 4,031 to 2,500 Ma (million years ago). The Late Heavy Bombardment is hypothesized to overlap with the beginning of the Archean. The oldest known glaciation occurred in the middle of the eon.

The Earth during the Archean was mostly a water world: there was continental crust, but much of it was under an ocean deeper than today's oceans. Except for some rare relict crystals (Hadean zircon), today's oldest continental crust dates back to the Archean. Much of the geological detail of the Archean has been destroyed by subsequent tectonic activity. The Earth's atmosphere was also vastly different in composition from today's: the prebiotic atmosphere was a reducing atmosphere rich in methane and lacking free oxygen.

↑ Return to Menu

Geologic eon in the context of Neoproterozoic

The Neoproterozoic is the last of the three geologic eras of the Proterozoic eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era and succeeded by the Paleozoic era of the Phanerozoic eon, and is further subdivided into three periods, the Tonian, Cryogenian and Ediacaran.

One of the most severe glaciation events known in the geologic record occurred during the Cryogenian period of the Neoproterozoic, when global ice sheets may have reached the equator and created a "Snowball Earth" lasting about 100 million years. The earliest fossils of complex life are found in the Tonian period in the form of Otavia, a primitive sponge, and the earliest fossil evidence of metazoan radiation are found in the Ediacaran period, which included the namesaked Ediacaran biota as well as the oldest definitive cnidarians and bilaterians in the fossil record.

↑ Return to Menu

Geologic eon in the context of Craton

A craton ( /ˈkrtɒn/ KRAYT-on, /ˈkrætɒn/ KRAT-on, or /ˈkrtən/ KRAY-tən; from Ancient Greek: κράτος kratos "strength") is an old and stable part of continental lithosphere (the Earth's two topmost layers, the crust and the lithospheric mantle). Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates; the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges. Cratons are composed of ancient crystalline basement rocks covered by younger sedimentary rocks. They have a thick crust and deep lithospheric roots extending several hundred kilometres into Earth's mantle.

Cratons contain the oldest continental crust rocks on Earth. They were formed in the Archaean (4 to 2.5 billion years ago) and the Proterozoic (2.5 billion- 538.8 million year ago) geologic eons. Most were formed in the Archaean.

↑ Return to Menu

Geologic eon in the context of Ediacaran

The Ediacaran ( /ˌdiˈækərən, ˌɛdi-/ EE-dee-AK-ər-ən, ED-ee-) is a geological period of the Neoproterozoic Era that spans 96 million years from the end of the Cryogenian Period at 635 Mya to the beginning of the Cambrian Period at 538.8 Mya. It is the last period of the Proterozoic Eon as well as the last of the so-called "Precambrian supereon", before the beginning of the subsequent Cambrian Period marks the start of the Phanerozoic Eon, where recognizable fossil evidence of life becomes common.

The Ediacaran Period is named after the Ediacara Hills of South Australia, where trace fossils of a diverse community of previously unrecognized lifeforms (later named the Ediacaran biota) were first discovered by geologist Reg Sprigg in 1946. Its status as an official geological period was ratified in 2004 by the International Union of Geological Sciences (IUGS), making it the first new geological period declared in 120 years. Although the period took namesake from the Ediacara Hills in the Nilpena Ediacara National Park, the type section is actually located in the bed of the Enorama Creek within the Brachina Gorge in the Ikara-Flinders Ranges National Park, at 31°19′53.8″S 138°38′0.1″E / 31.331611°S 138.633361°E / -31.331611; 138.633361, approximately 55 km (34 mi) southeast of the Ediacara Hills fossil site.

↑ Return to Menu