Geodesy in the context of LiDAR


Geodesy in the context of LiDAR

Geodesy Study page number 1 of 6

Play TriviaQuestions Online!

or

Skip to study material about Geodesy in the context of "LiDAR"


⭐ Core Definition: Geodesy

Geodesy or geodetics is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

Geodynamical phenomena, including crustal motion, tides, and polar motion, can be studied by designing global and national control networks, applying space geodesy and terrestrial geodetic techniques, and relying on datums and coordinate systems.

↓ Menu
HINT:

In this Dossier

Geodesy in the context of Spherical Earth

Spherical Earth or Earth's curvature refers to the approximation of the figure of the Earth as a sphere. The earliest documented mention of the concept dates from around the 5th century BC, when it appears in the writings of Greek philosophers. In the 3rd century BC, Hellenistic astronomy established the roughly spherical shape of Earth as a physical fact and calculated the Earth's circumference. This knowledge was gradually adopted throughout the Old World during Late Antiquity and the Middle Ages, displacing earlier beliefs in a flat Earth. A practical demonstration of Earth's sphericity was achieved by Ferdinand Magellan and Juan Sebastián Elcano's circumnavigation (1519–1522).

The realization that the figure of the Earth is more accurately described as an ellipsoid dates to the 17th century, as described by Isaac Newton in Principia. In the early 19th century, the flattening of the earth ellipsoid was determined to be of the order of 1/300 (Delambre, Everest). The modern value as determined by the US DoD World Geodetic System since the 1960s is close to 1/298.25. The scientific study of the shape of the Earth is known as geodesy.

View the full Wikipedia page for Spherical Earth
↑ Return to Menu

Geodesy in the context of Above sea level

Height above mean sea level is a measure of a location's vertical distance (height, elevation or altitude) in reference to a vertical datum based on a historic mean sea level. In geodesy, it is formalized as orthometric height. The zero level varies in different countries due to different reference points and historic measurement periods. Climate change and other forces can cause sea levels and elevations to vary over time.

View the full Wikipedia page for Above sea level
↑ Return to Menu

Geodesy in the context of Geographical pole

A geographical pole or geographic pole is either of the two points on Earth where its axis of rotation intersects its surface. The North Pole lies in the Arctic Ocean while the South Pole is in Antarctica. North and South poles are also defined for other planets or satellites in the Solar System, with a North pole being on the same side of the invariable plane as Earth's North pole.

Relative to Earth's surface, the geographic poles move by a few metres over periods of a few years. This is a combination of Chandler wobble, a free oscillation with a period of about 433 days; an annual motion responding to seasonal movements of air and water masses; and an irregular drift towards the 80th west meridian. As cartography and geodesy require exact and unchanging coordinates, the average or nominal locations of geographical poles are taken as fixed cartographic poles or geodetic poles, the points where the body's great circles of longitude intersect; in practice this is achieved by keeping latitude values of survey markers fixed and accounting for time variations in terms of Earth orientation parameters.

View the full Wikipedia page for Geographical pole
↑ Return to Menu

Geodesy in the context of Trigonometry

Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine.

Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation.

View the full Wikipedia page for Trigonometry
↑ Return to Menu

Geodesy in the context of Figure of the Earth

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy (including ellipsoid) have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

View the full Wikipedia page for Figure of the Earth
↑ Return to Menu

Geodesy in the context of History of geodesy

The history of geodesy (/dʒiːˈɒdɪsi/) began during antiquity and ultimately blossomed during the Age of Enlightenment.

Many early conceptions of the Earth held it to be flat, with the heavens being a physical dome spanning over it. Early arguments for a spherical Earth pointed to various more subtle empirical observations, including how lunar eclipses were seen as circular shadows, as well as the fact that Polaris is seen lower in the sky as one travels southward.

View the full Wikipedia page for History of geodesy
↑ Return to Menu

Geodesy in the context of Earth ellipsoid

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's shape and size, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different reference ellipsoids have been used as approximations.

It is an oblate spheroid (an ellipsoid of revolution) whose minor axis (polar diameter), connecting the geographical poles, is approximately aligned with the Earth's axis of rotation. The ellipsoid is also defined by the major axis (equatorial axis); the difference between the two axes is slightly more than 21 km or 0.335%.

View the full Wikipedia page for Earth ellipsoid
↑ Return to Menu

Geodesy in the context of World Geodetic System

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

View the full Wikipedia page for World Geodetic System
↑ Return to Menu

Geodesy in the context of Ministry of Public Works and Transport (Spain)

The Ministry of Transport and Sustainable Mobility (MITMA) (Spanish: Ministerio de Transportes y Movilidad Sostenible), traditionally known as the Ministry of Development (MIFOM), is the department of the Government of Spain responsible for preparing and implementing the government policy on land, air and maritime transport infrastructure and the control, planning and regulation of the transport services on this areas. It is also responsible for guaranteeing access to housing; urban, soil and architecture policies; planning and controlling the postal and telegraph services, directing the services related to astronomy, geodesy, geophysics and mapping, and planning and programing the government investments on infrastructure and services related to this scope. The Ministry's headquarters are in the New Ministries government complex.

MITMA is headed by the Minister of Transport, Mobility and Urban Agenda, who is appointed by the King of Spain at request of the Prime Minister. The Minister is assisted by two main officials, the Secretary of State for Infrastructure, Transport and Housing and the Under Secretary of Transport, Mobility and Urban Agenda. Other senior officials of the ministry include the Secretary General for Infrastructure, the Secretary General for Transport and the Secretary General for Housing. Since 21 November 2023 the minister has been Óscar Puente.

View the full Wikipedia page for Ministry of Public Works and Transport (Spain)
↑ Return to Menu

Geodesy in the context of Surveying

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial positions of points based on the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designated positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

A professional in land surveying is called a land surveyor.Surveyors work with elements of geodesy, geometry, trigonometry, regression analysis, physics, engineering, metrology, programming languages, and the law. They use equipment, such as total stations, robotic total stations, theodolites, GNSS receivers, retroreflectors, 3D scanners, lidar sensors, radios, inclinometer, handheld tablets, optical and digital levels, subsurface locators, drones, GIS, and surveying software.

View the full Wikipedia page for Surveying
↑ Return to Menu

Geodesy in the context of Geoid

The geoid (/ˈ.ɔɪd/ JEE-oyd) is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents (such as might be approximated with very narrow hypothetical canals). According to Carl Friedrich Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

The geoid is often expressed as a geoid undulation or geoidal height above a given reference ellipsoid, which is a slightly flattened sphere whose equatorial bulge is caused by the planet's rotation. Generally the geoidal height rises where the Earth's material is locally more dense and exerts greater gravitational force than the surrounding areas. The geoid in turn serves as a reference coordinate surface for various vertical coordinates, such as orthometric heights, geopotential heights, and dynamic heights (see Geodesy).

View the full Wikipedia page for Geoid
↑ Return to Menu

Geodesy in the context of Geomorphology

Geomorphology (from Ancient Greek γῆ () 'earth' μορφή (morphḗ) 'form' and λόγος (lógos) 'study') is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

View the full Wikipedia page for Geomorphology
↑ Return to Menu

Geodesy in the context of Line of longitude

In geography and geodesy, a meridian is the locus connecting points of equal longitude, which is the angle (in degrees or other units) east or west of a given prime meridian (currently, the IERS Reference Meridian). In other words, it is a coordinate line for longitudes, a line of longitude. The position of a point along the meridian at a given longitude is given by its latitude, measured in angular degrees north or south of the Equator. On a Mercator projection or on a Gall-Peters projection, each meridian is perpendicular to all circles of latitude. Assuming a spherical Earth, a meridian is a great semicircle on Earth's surface. Adopting instead a spheroidal or ellipsoid model of Earth, the meridian is half of a north-south great ellipse. The length of a meridian is twice the length of an Earth quadrant, equal to 20,003.93144 km (12,429.86673 mi) on a modern ellipsoid (WGS 84).

View the full Wikipedia page for Line of longitude
↑ Return to Menu

Geodesy in the context of Bouguer anomaly

In geodesy and geophysics, the Bouguer anomaly (named after Pierre Bouguer) is a gravity anomaly, corrected for the height at which it is measured and the attraction of terrain. The height correction alone gives a free-air gravity anomaly.

View the full Wikipedia page for Bouguer anomaly
↑ Return to Menu

Geodesy in the context of Geodesic

In geometry, a geodesic (/ˌ.əˈdɛsɪk, --, -ˈdsɪk, -zɪk/) is a curve representing in some sense the locally shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

The noun geodesic and the adjective geodetic come from geodesy, the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph.

View the full Wikipedia page for Geodesic
↑ Return to Menu

Geodesy in the context of Satellite geodesy

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

View the full Wikipedia page for Satellite geodesy
↑ Return to Menu