Genetic algorithm in the context of Genetic operator


Genetic algorithm in the context of Genetic operator

Genetic algorithm Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Genetic algorithm in the context of "Genetic operator"


⭐ Core Definition: Genetic algorithm

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems via biologically inspired operators such as selection, crossover, and mutation. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, and causal inference.

↓ Menu
HINT:

In this Dossier

Genetic algorithm in the context of Approximation algorithms

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos for scheduling on unrelated parallel machines.

The design and analysis of approximation algorithms crucially involves a mathematical proof certifying the quality of the returned solutions in the worst case. This distinguishes them from heuristics such as annealing or genetic algorithms, which find reasonably good solutions on some inputs, but provide no clear indication at the outset on when they may succeed or fail.

View the full Wikipedia page for Approximation algorithms
↑ Return to Menu

Genetic algorithm in the context of Fitness function

A fitness function is a particular type of objective or cost function that is used to summarize, as a single figure of merit, how close a given candidate solution is to achieving the set aims. It is an important component of evolutionary algorithms (EA), such as genetic programming, evolution strategies or genetic algorithms. An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or planning tasks, at least approximately. For this purpose, many candidate solutions are generated, which are evaluated using a fitness function in order to guide the evolutionary development towards the desired goal. Similar quality functions are also used in other metaheuristics, such as ant colony optimization or particle swarm optimization.

In the field of EAs, each candidate solution, also called an individual, is commonly represented as a string of numbers (referred to as a chromosome). After each round of testing or simulation the idea is to delete the n worst individuals, and to breed n new ones from the best solutions. Each individual must therefore to be assigned a quality number indicating how close it has come to the overall specification, and this is generated by applying the fitness function to the test or simulation results obtained from that candidate solution.

View the full Wikipedia page for Fitness function
↑ Return to Menu

Genetic algorithm in the context of Genetic operators

A genetic operator is an operator used in evolutionary algorithms (EA) to guide the algorithm towards a solution to a given problem. There are three main types of operators (mutation, crossover and selection), which must work in conjunction with one another in order for the algorithm to be successful. Genetic operators are used to create and maintain genetic diversity (mutation operator), combine existing solutions (also known as chromosomes) into new solutions (crossover) and select between solutions (selection).

The classic representatives of evolutionary algorithms include genetic algorithms, evolution strategies, genetic programming and evolutionary programming. In his book discussing the use of genetic programming for the optimization of complex problems, computer scientist John Koza has also identified an 'inversion' or 'permutation' operator; however, the effectiveness of this operator has never been conclusively demonstrated and this operator is rarely discussed in the field of genetic programming. For combinatorial problems, however, these and other operators tailored to permutations are frequently used by other EAs.

View the full Wikipedia page for Genetic operators
↑ Return to Menu