General linear group in the context of Orthogonal group


General linear group in the context of Orthogonal group

General linear group Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about General linear group in the context of "Orthogonal group"


HINT:

In this Dossier

General linear group in the context of Automorphism group

In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X.

Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group.

View the full Wikipedia page for Automorphism group
↑ Return to Menu

General linear group in the context of Abuse of terminology

In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors and confusion at the same time). However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. Abuse of notation should be contrasted with misuse of notation, which does not have the presentational benefits of the former and should be avoided (such as the misuse of constants of integration).

A related concept is abuse of language or abuse of terminology, where a term — rather than a notation — is misused. Abuse of language is an almost synonymous expression for abuses that are non-notational by nature. For example, while the word representation properly designates a group homomorphism from a group G to GL(V), where V is a vector space, it is common to call V "a representation of G". Another common abuse of language consists in identifying two mathematical objects that are different, but canonically isomorphic. Other examples include identifying a constant function with its value, identifying a group with a binary operation with the name of its underlying set, or identifying with the Euclidean space of dimension three equipped with a Cartesian coordinate system.

View the full Wikipedia page for Abuse of terminology
↑ Return to Menu

General linear group in the context of Special orthogonal group

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

The orthogonal group in dimension n has two connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted SO(n). It consists of all orthogonal matrices of determinant 1. This group is also called the rotation group, generalizing the fact that in dimensions 2 and 3, its elements are the usual rotations around a point (in dimension 2) or a line (in dimension 3). In low dimension, these groups have been widely studied, see SO(2), SO(3) and SO(4). The other component consists of all orthogonal matrices of determinant −1. This component does not form a group, as the product of any two of its elements is of determinant 1, and therefore not an element of the component.

View the full Wikipedia page for Special orthogonal group
↑ Return to Menu

General linear group in the context of Unitary group

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C), and it has as a subgroup the special unitary group, consisting of those unitary matrices with determinant 1.

In the simple case n = 1, the group U(1) corresponds to the circle group, isomorphic to the set of all complex numbers that have absolute value 1, under multiplication. All the unitary groups contain copies of this group.

View the full Wikipedia page for Unitary group
↑ Return to Menu

General linear group in the context of Special linear group

In mathematics, the special linear group of degree over a commutative ring is the set of matrices with determinant , with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant

where is the multiplicative group of (that is, excluding when is a field).

View the full Wikipedia page for Special linear group
↑ Return to Menu