Gears in the context of "Transmission (mechanical device)"

Play Trivia Questions online!

or

Skip to study material about Gears in the context of "Transmission (mechanical device)"

Ad spacer

⭐ Core Definition: Gears

A gear or gearwheel, also called a toothed wheel, is a rotating machine part typically used to transmit rotational motion or torque by means of a series of "teeth" that engage with compatible teeth of another gear or other part. The teeth can be integral saliences or cavities machined on the part, or separate pegs inserted into it. In the latter case, the gear is usually called a cogwheel. A cog may be one of those pegs or the whole gear. Two or more meshing gears are called a gear train.

The smaller member of a pair of meshing gears is often called pinion. Most commonly, gears and gear trains can be used to trade torque for rotational speed between two axles or other rotating parts or to change the axis of rotation or to invert the sense of rotation. A gear may also be used to transmit linear force or linear motion to a rack, a straight bar with a row of compatible teeth.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Gears in the context of Transmission (mechanical device)

A transmission (also called a gearbox) is a mechanical device invented by Louis Renault (who founded Renault) which uses a gear set—two or more gears working together—to change the speed, direction of rotation, or torque multiplication or reduction, in a machine.

A transmission can have a single, or fixed, gear ratio or it can have variable ratios; a variable-ratio transmission can have multiple discrete gear ratios or be continuously variable. Variable-ratio transmissions are used in many kinds of machinery, especially vehicles.

↓ Explore More Topics
In this Dossier

Gears in the context of Mechanical computer

A mechanical computer is a computer built from mechanical components such as levers and gears rather than electronic components. The most common examples are adding machines and mechanical counters, which use the turning of gears to increment output displays. More complex examples could carry out multiplication and division—Friden used a moving head which paused at each column—and even differential analysis. One model, the Ascota 170 accounting machine sold in the 1960s, calculated square roots.

Mechanical computers can be either analog, using continuous or smooth mechanisms such as curved plates or slide rules for computations; or discrete, which use mechanisms like pinwheels and gears.

↑ Return to Menu

Gears in the context of Clockmaker

A clockmaker is an artisan who makes and/or repairs clocks. Since almost all clocks are now factory-made, most modern clockmakers only repair clocks. Modern clockmakers may be employed by jewellers, antique shops, and places devoted strictly to repairing clocks and watches. Clockmakers must be able to read blueprints and instructions for numerous types of clocks and time pieces that vary from antique clocks to modern time pieces in order to fix and make clocks or watches. The trade requires fine motor coordination as clockmakers must frequently work on devices with small gears and fine machinery.

Originally, clockmakers were master craftsmen who designed and built clocks by hand. Since modern clockmakers are required to repair antique, handmade or one-of-a-kind clocks for which parts are not available, they must have some of the design and fabrication abilities of the original craftsmen. A qualified clockmaker can typically design and make a missing piece for a clock without access to the original component.

↑ Return to Menu