Full adder in the context of Digital circuit


Full adder in the context of Digital circuit

Full adder Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Full adder in the context of "Digital circuit"


⭐ Core Definition: Full adder

An adder, or summer, is a digital circuit that performs addition of numbers. In many computers and other kinds of processors, adders are used in the arithmetic logic units (ALUs). They are also used in other parts of the processor, where they are used to calculate addresses, table indices, increment and decrement operators and similar operations.

Although adders can be constructed for many number representations, such as binary-coded decimal or excess-3, the most common adders operate on binary numbers.In cases where two's complement or ones' complement is being used to represent negative numbers, it is trivial to modify an adder into an adder–subtractor.Other signed number representations require more logic around the basic adder.

↓ Menu
HINT:

In this Dossier

Full adder in the context of Combinational logic

In automata theory, combinational logic (also referred to as time-independent logic) is a type of digital logic that is implemented by Boolean circuits, where the output is a pure function of the present input only. This is in contrast to sequential logic, in which the output depends not only on the present input but also on the history of the input. In other words, sequential logic has memory while combinational logic does not.

Combinational logic is used in computer circuits to perform Boolean algebra on input signals and on stored data. Practical computer circuits normally contain a mixture of combinational and sequential logic. For example, the part of an arithmetic logic unit, or ALU, that does mathematical calculations is constructed using combinational logic. Other circuits used in computers, such as half adders, full adders, half subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders are also made by using combinational logic.

View the full Wikipedia page for Combinational logic
↑ Return to Menu