Formation of the Earth in the context of Atmospheric circulation


Formation of the Earth in the context of Atmospheric circulation

Formation of the Earth Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Formation of the Earth in the context of "Atmospheric circulation"


⭐ Core Definition: Formation of the Earth

Earth is the third planet from the Sun and the only astronomical object known to harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all of Earth's water is contained in its global ocean, covering 70.8% of Earth's crust. The remaining 29.2% of Earth's crust is land, most of which is located in the form of continental landmasses within Earth's land hemisphere. Most of Earth's land is at least somewhat humid and covered by vegetation, while large ice sheets at Earth's polar deserts retain more water than Earth's groundwater, lakes, rivers, and atmospheric water combined. Earth's crust consists of slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth has a liquid outer core that generates a magnetosphere capable of deflecting most of the destructive solar winds and cosmic radiation.

Earth has a dynamic atmosphere, which sustains Earth's surface conditions and protects it from most meteoroids and UV-light at entry. It is composed primarily of nitrogen and oxygen. Water vapor is widely present in the atmosphere, forming clouds that cover most of the planet. The water vapor acts as a greenhouse gas and, together with other greenhouse gases in the atmosphere, particularly carbon dioxide (CO2), creates the conditions for both liquid surface water and water vapor to persist via the capturing of energy from the Sun's light. This process maintains the current average surface temperature of 14.76 °C (58.57 °F), at which water is liquid under normal atmospheric pressure. Differences in the amount of captured energy between geographic regions (as with the equatorial region receiving more sunlight than the polar regions) drive atmospheric and ocean currents, producing a global climate system with different climate regions, and a range of weather phenomena such as precipitation, allowing components such as carbon and nitrogen to cycle.

↓ Menu
HINT:

In this Dossier

Formation of the Earth in the context of Hadean Eon

The Hadean (/hˈdən, ˈhdiən/ hay-DEE-ən, HAY-dee-ən) is the first and oldest of the four geologic eons of Earth's history, starting with the planet's formation about 4.6 Ga (estimated 4567.30 ± 0.16 Ma set by the age of the oldest solid material in the Solar Systemprotoplanetary disk dust particles—found as chondrules and calcium–aluminium-rich inclusions in some meteorites about 4.567 Ga), and ending 4.031 Ga, the age of the oldest known intact rock formations on Earth as recognized by the International Commission on Stratigraphy. The interplanetary collision that created the Moon occurred early in this eon. The Hadean eon was succeeded by the Archean eon, with the Late Heavy Bombardment hypothesized to have occurred at the Hadean-Archean boundary.

Hadean rocks are very rare, largely consisting of granular zircons from one locality (Jack Hills) in Western Australia. Hadean geophysical models remain controversial among geologists: plate tectonics and the growth of cratons into continents may have started in the Hadean, but there is still uncertainty.

View the full Wikipedia page for Hadean Eon
↑ Return to Menu

Formation of the Earth in the context of Primordial isotope

In geochemistry, geophysics and nuclear physics, primordial nuclides, or primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the Solar System was formed, and were formed in the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, or from other processes throughout the history of the universe. They are the stable nuclides plus the fraction of the long-lived radionuclides surviving from the primordial solar nebula through planet accretion until the present; 286 such nuclides are known.

View the full Wikipedia page for Primordial isotope
↑ Return to Menu