Formal verification in the context of "CompCert"

Play Trivia Questions online!

or

Skip to study material about Formal verification in the context of "CompCert"

Ad spacer

⭐ Core Definition: Formal verification

In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification is a key incentive for formal specification of systems, and is at the core of formal methods.It represents an important dimension of analysis and verification in electronic design automation and is one approach to software verification. The use of formal verification enables the highest Evaluation Assurance Level (EAL7) in the framework of common criteria for computer security certification.

Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code in a programming language. Prominent examples of verified software systems include the CompCert verified C compiler and the seL4 high-assurance operating system kernel.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Formal verification in the context of CompCert

CompCert is a formally verified optimizing compiler for a large subset of the C99 programming language (known as Clight) which currently targets PowerPC, ARM, RISC-V, x86 and x86-64 architectures. This project, led by Xavier Leroy, started officially in 2005, funded by the French institutes ANR and INRIA. The compiler is specified, programmed and proven in the Rocq proof assistant. It aims to be used for programming embedded systems requiring reliability. The performance of its generated code is often close to that of GCC (version 3) at optimization level -O1, and always better than that of GCC without optimizations.

Since 2015, AbsInt offers commercial licenses, provides support and maintenance, and contributes to the advancement of the tool. CompCert is released under a noncommercial license, and is therefore not free software, although some of its source files are dual-licensed with the GNU Lesser General Public License version 2.1 or later or are available under the terms of other licenses.

↓ Explore More Topics
In this Dossier

Formal verification in the context of Temporal logic

In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time (for example, "I am always hungry", "I will eventually be hungry", or "I will be hungry until I eat something"). It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.

Temporal logic has found an important application in formal verification, where it is used to state requirements of hardware or software systems. For instance, one may wish to say that whenever a request is made, access to a resource is eventually granted, but it is never granted to two requestors simultaneously. Such a statement can conveniently be expressed in a temporal logic.

↑ Return to Menu

Formal verification in the context of Formal methods

In computer science, formal methods are mathematically rigorous techniques for the specification, development, analysis, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design.

Formal methods employ a variety of theoretical computer science fundamentals, including logic calculi, formal languages, automata theory, control theory, program semantics, type systems, and type theory.

↑ Return to Menu

Formal verification in the context of Automata theory

Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science with close connections to cognitive science and mathematical logic. The word automata comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton (automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a finite automaton (FA) or finite-state machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the previous state and current input symbol as its arguments.

Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata. Automata play a major role in the theory of computation, compiler construction, artificial intelligence, parsing and formal verification.

↑ Return to Menu

Formal verification in the context of Abstract data type

In computer science, an abstract data type (ADT) is a mathematical model for data types, defined by its behavior (semantics) from the point of view of a user of the data, specifically in terms of possible values, possible operations on data of this type, and the behavior of these operations. This mathematical model contrasts with data structures, which are concrete representations of data, and are the point of view of an implementer, not a user. For example, a stack has push/pop operations that follow a Last-In-First-Out rule, and can be concretely implemented using either a list or an array. Another example is a set which stores values, without any particular order, and no repeated values. Values themselves are not retrieved from sets; rather, one tests a value for membership to obtain a Boolean "in" or "not in".

ADTs are a theoretical concept, used in formal semantics and program verification and, less strictly, in the design and analysis of algorithms, data structures, and software systems. Most mainstream computer languages do not directly support formally specifying ADTs. However, various language features correspond to certain aspects of implementing ADTs, and are easily confused with ADTs proper; these include abstract types, opaque data types, protocols, and design by contract. For example, in modular programming, the module declares procedures that correspond to the ADT operations, often with comments that describe the constraints. This information hiding strategy allows the implementation of the module to be changed without disturbing the client programs, but the module only informally defines an ADT. The notion of abstract data types is related to the concept of data abstraction, important in object-oriented programming and design by contract methodologies for software engineering.

↑ Return to Menu

Formal verification in the context of Certifying algorithm

In theoretical computer science, a certifying algorithm is an algorithm that outputs, together with a solution to the problem it solves, a proof that the solution is correct. A certifying algorithm is said to be efficient if the combined runtime of the algorithm and a proof checker is slower by at most a constant factor than the best known non-certifying algorithm for the same problem.

The proof produced by a certifying algorithm should be in some sense simpler than the algorithm itself, for otherwise any algorithm could be considered certifying (with its output verified by running the same algorithm again). Sometimes this is formalized by requiring that a verification of the proof take less time than the original algorithm, while for other problems (in particular those for which the solution can be found in linear time) simplicity of the output proof is considered in a less formal sense. For instance, the validity of the output proof may be more apparent to human users than the correctness of the algorithm, or a checker for the proof may be more amenable to formal verification.

↑ Return to Menu

Formal verification in the context of Satisfiability modulo theories

In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers). SMT solvers are tools that aim to solve the SMT problem for a practical subset of inputs. SMT solvers such as Z3 and cvc5 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing.

Since Boolean satisfiability is already NP-complete, the SMT problem is typically NP-hard, and for many theories it is undecidable. Researchers study which theories or subsets of theories lead to a decidable SMT problem and the computational complexity of decidable cases. The resulting decision procedures are often implemented directly in SMT solvers; see, for instance, the decidability of Presburger arithmetic. SMT can be thought of as a constraint satisfaction problem and thus a certain formalized approach to constraint programming.

↑ Return to Menu