Forces in the context of Virtual work


Forces in the context of Virtual work

Forces Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Forces in the context of "Virtual work"


⭐ Core Definition: Forces

In physics, a force is an action (usually a push or a pull) that can cause an object to change its velocity or its shape, or to resist other forces, or to cause changes of pressure in a fluid. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity (force vector). The SI unit of force is the newton (N), and force is often represented by the symbol F.

Force plays an important role in classical mechanics. The concept of force is central to all three of Newton's laws of motion. Types of forces often encountered in classical mechanics include elastic, frictional, contact or "normal" forces, and gravitational. The rotational version of force is torque, which produces changes in the rotational speed of an object. In an extended body, each part applies forces on the adjacent parts; the distribution of such forces through the body is the internal mechanical stress. In the case of multiple forces, if the net force on an extended body is zero the body is in equilibrium.

↓ Menu
HINT:

👉 Forces in the context of Virtual work

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

Historically, virtual work and the associated calculus of variations were formulated to analyze systems of rigid bodies, but they have also been developed for the study of the mechanics of deformable bodies.

↓ Explore More Topics
In this Dossier

Forces in the context of Electrostatics

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges on macroscopic objects where quantum effects can be neglected. Under these circumstances the electric field, electric potential, and the charge density are related without complications from magnetic effects.

Since classical antiquity, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word ḗlektron (ἤλεκτρον), meaning 'amber', was thus the root of the word electricity. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law.

View the full Wikipedia page for Electrostatics
↑ Return to Menu

Forces in the context of Linkage (mechanical)

A mechanical linkage is an assembly of systems connected so as to manage forces and movement. The movement of a body, or link, is studied using geometry so the link is considered to be rigid. The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.

Linkages may be constructed from open chains, closed chains, or a combination of open and closed chains. Each link in a chain is connected by a joint to one or more other links. Thus, a kinematic chain can be modeled as a graph in which the links are paths and the joints are vertices, which is called a linkage graph.

View the full Wikipedia page for Linkage (mechanical)
↑ Return to Menu

Forces in the context of Dispersive adhesion

Dispersive adhesion, also called adsorptive adhesion, is a mechanism for adhesion which attributes attractive forces between two materials to intermolecular interactions between molecules of each material. This mechanism is widely viewed as the most important of the five mechanisms of adhesion due to its presence in every type of adhesive system and its relative strength.

View the full Wikipedia page for Dispersive adhesion
↑ Return to Menu

Forces in the context of Force gauge

A force gauge (also called a force meter) is a measuring instrument used to measure forces. Applications exist in research and development, laboratory, quality, production and field environment. There are two kinds of force gauges today: mechanical and digital force gauges. Force Gauges usually measure pressure in stress increments and other dependent human factors.

View the full Wikipedia page for Force gauge
↑ Return to Menu