Flywheel energy storage in the context of "Emergency power system"

Play Trivia Questions online!

or

Skip to study material about Flywheel energy storage in the context of "Emergency power system"




⭐ Core Definition: Flywheel energy storage

Flywheel energy storage (FES) works by spinning a rotor (flywheel) and maintaining the energy in the system as rotational energy. When energy is extracted from the system, the flywheel's rotational speed is reduced as a consequence of the principle of conservation of energy; adding energy to the system correspondingly results in an increase in the speed of the flywheel. While some systems use low mass/high speed rotors, other use very massive rotors eg 200 tonnes and correspondingly much lower rotational speeds, referred to as grid-scale flywheel energy storage.

Most FES systems use electricity to accelerate and decelerate the flywheel, but devices that directly use mechanical energy are being developed.

↓ Menu

👉 Flywheel energy storage in the context of Emergency power system

An emergency power system is an independent source of electrical power that supports important electrical systems on loss of normal power supply. A standby power system may include a standby generator, batteries and other apparatus. Emergency power systems are installed to protect life and property from the consequences of loss of primary electric power supply. It is a type of continual power system.

They find uses in a wide variety of settings from homes to hospitals, scientific laboratories, data centers, telecommunication equipment and ships. Emergency power systems can rely on generators, deep-cycle batteries, flywheel energy storage or fuel cells.

↓ Explore More Topics
In this Dossier

Flywheel energy storage in the context of Accumulator (energy)

An accumulator is an energy storage device: a device which accepts energy, stores energy, and releases energy as needed. Some accumulators accept energy at a low rate (low power) over a long time interval and deliver the energy at a high rate (high power) over a short time interval. Some accumulators accept energy at a high rate over a short time interval and deliver the energy at a low rate over a longer time interval. Some accumulators typically accept and release energy at comparable rates. Various devices can store thermal energy, mechanical energy, and electrical energy. Energy is usually accepted and delivered in the same form. Some devices store a different form of energy than what they receive and deliver performing energy conversion on the way in and on the way out.

Examples of accumulators include steam accumulators, mainsprings, flywheel energy storage, hydraulic accumulators, rechargeable batteries, capacitors, inductors, compensated pulsed alternators (compulsators), and pumped-storage hydroelectric plants.

↑ Return to Menu

Flywheel energy storage in the context of Electric bus

An electric bus is a bus that is propelled using electric motors, as opposed to a conventional internal combustion engine. Electric buses can store the needed electrical energy on board, or be fed mains electricity continuously from an external source such as overhead lines. The majority of buses using on-board energy storage are battery electric buses (which is what this article mostly deals with), where the electric motor obtains energy from an onboard battery pack, although examples of other storage modes do exist, such as the gyrobus that uses flywheel energy storage. When electricity is not stored on board, it is supplied by contact with outside power supplies, for example, via a current collector (like the overhead conduction poles in trolleybuses), or with a ground-level power supply, or through inductive charging.

As of 2017, 99% of all battery electric buses in the world have been deployed in Mainland China, with more than 421,000 buses on the road, which is 17% of China's total bus fleet. For comparison, the United States had 300, and Europe had 2,250. By 2021, China's share of electric buses remained at 98% while Europe had reached 8,500 electric buses, with the largest fleet in Europe being Moscow.

↑ Return to Menu

Flywheel energy storage in the context of Uninterruptible power supply

An uninterruptible power supply (UPS) or uninterruptible power source is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions, by supplying energy stored in batteries, supercapacitors, or flywheels.

The on-battery run-time of most uninterruptible power sources is relatively short (typically ranging from 5 to 15 minutes) but sufficient to start a standby power source or properly shut down the protected equipment. It is a type of continual power system. A UPS is typically used to protect hardware such as computers, data centers, telecommunication equipment or other electrical equipment where an unexpected power disruption could cause injuries, fatalities, serious business disruption or data loss. UPS units range in size from units designed to protect a single computer without a video monitor (around 200 volt-ampere rating) to large units powering entire data centers or buildings.

↑ Return to Menu