Fluorescent in the context of Energy level


Fluorescent in the context of Energy level

Fluorescent Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Fluorescent in the context of "Energy level"


⭐ Core Definition: Fluorescent

Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colored visible light. The color of the light emitted depends on the chemical composition of the substance. Fluorescent materials generally cease to glow nearly immediately when the radiation source stops. This distinguishes them from the other type of light emission, phosphorescence. Phosphorescent materials continue to emit light for some time after the radiation stops.This difference in duration is a result of quantum spin effects.

Fluorescence occurs when a photon from incoming radiation is absorbed by a molecule, exciting it to a higher energy level, followed by the emission of light as the molecule returns to a lower energy state. The emitted light may have a longer wavelength and, therefore, a lower photon energy than the absorbed radiation. For example, the absorbed radiation could be in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region. This gives the fluorescent substance a distinct color, best seen when exposed to UV light, making it appear to glow in the dark. However, any light with a shorter wavelength may cause a material to fluoresce at a longer wavelength. Fluorescent materials may also be excited by certain wavelengths of visible light, which can mask the glow, yet their colors may appear bright and intensified. Other fluorescent materials emit their light in the infrared or even the ultraviolet regions of the spectrum.

↓ Menu
HINT:

In this Dossier

Fluorescent in the context of Electron lens

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology.

View the full Wikipedia page for Electron lens
↑ Return to Menu

Fluorescent in the context of Cell nucleus

The cell nucleus (from Latin nucleus or nuculeus 'kernel, seed'; pl.: nuclei) is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many. The main structures making up the nucleus are the nuclear envelope, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm; and the nuclear matrix, a network within the nucleus that adds mechanical support.

The cell nucleus contains nearly all of the cell's genome. Nuclear DNA is often organized into multiple chromosomes – long strands of DNA dotted with various proteins, such as histones, that protect and organize the DNA. The genes within these chromosomes are structured in such a way to promote cell function. The nucleus maintains the integrity of genes and controls the activities of the cell by regulating gene expression.

View the full Wikipedia page for Cell nucleus
↑ Return to Menu

Fluorescent in the context of Scorpion

Scorpions (order Scorpiones) are predatory arachnids with eight legs, a pair of grasping pincers and a narrow, segmented tail, often carried in a characteristic forward curve over the back and always ending with a stinger. The evolutionary history of scorpions goes back 435 million years. They mainly live in deserts but have adapted to a wide range of environmental conditions, and can be found on all continents except Antarctica. There are over 2,500 described species, with 22 extant (living) families recognized to date. Their taxonomy is being revised to account for 21st-century genomic studies.

Scorpions primarily prey on insects and other invertebrates, but some species hunt vertebrates. They use their pincers to restrain and kill prey, or to prevent their own predation. The venomous sting is used for offense and defense. During courtship, the male and female grasp each other's pincers and dance while the male tries to move the female onto its sperm packet. All known species give live birth and the female cares for the young as their exoskeletons harden, transporting them on its back. The exoskeleton contains fluorescent chemicals and glows under ultraviolet light.

View the full Wikipedia page for Scorpion
↑ Return to Menu

Fluorescent in the context of GloFish

The GloFish is a patented and trademarked brand of fluorescently colored genetically modified aquarium fish. They have been created from several different species of fish: zebrafish were the first GloFish available in pet stores, and recently the black tetra, tiger barb, rainbow shark, Siamese fighting fish, X-ray tetra, and most recently bronze corydoras have been added to the lineup. They are sold in many colors, trademarked as "Starfire Red", "Moonrise Pink", "Sunburst Orange", "Electric Green", "Cosmic Blue", and "Galactic Purple", although not all species are available in all colors. Although not originally developed for the ornamental fish trade, it is one of the first genetically modified animals to become publicly available. The rights to GloFish are owned by Spectrum Brands, Inc., which purchased GloFish from Yorktown Technologies, the original developer of GloFish, in May 2017.

View the full Wikipedia page for GloFish
↑ Return to Menu

Fluorescent in the context of Phosphor

A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or visible light, and cathodoluminescent substances which glow when struck by an electron beam (cathode rays) in a cathode-ray tube.

When a phosphor is exposed to radiation, the orbital electrons in its molecules are excited to a higher energy level; when they return to their former level they emit the energy as light of a certain color. Phosphors can be classified into two categories: fluorescent substances which emit the energy immediately and stop glowing when the exciting radiation is turned off, and phosphorescent substances which emit the energy after a delay, so they keep glowing after the radiation is turned off, decaying in brightness over a period of milliseconds to days.

View the full Wikipedia page for Phosphor
↑ Return to Menu

Fluorescent in the context of Black light theatre

Black light theatre (in Czech černé divadlo) or simply black theatre, is a theatrical performance style characterized by the use of black box theatre augmented by black light illusion. This form of theatre originated from Asia and can be found in many places around the world. It has become a speciality of Prague, where many theatres use it.

The distinctive characteristics of "black theatre" are the use of black curtains, a darkened stage, and "black lighting" (UV light), paired with fluorescent costumes in order to create intricate visual illusions. This "black cabinet" technique was used by Georges Méliès, and by theatre revolutionary Konstantin Stanislavski (especially in his production of Cain). The technique, paired with the expressive artistry of dance, mime and acrobatics of the performers is able to create remarkable spectacles.

View the full Wikipedia page for Black light theatre
↑ Return to Menu

Fluorescent in the context of Radium

Radium is a chemical element; it has symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years. When radium decays, it emits ionizing radiation as a by-product, which can excite fluorescent chemicals and cause radioluminescence. For this property, it was widely used in self-luminous paints following its discovery. Of the radioactive elements that occur in quantity, radium is considered particularly toxic, and it is carcinogenic due to the radioactivity of both it and its immediate decay product radon as well as its tendency to accumulate in the bones.

Radium, in the form of radium chloride, was discovered by Marie and Pierre Curie in 1898 from ore mined at Jáchymov. They extracted the radium compound from uraninite and published the discovery at the French Academy of Sciences five days later. Radium was isolated in its metallic state by Marie Curie and André-Louis Debierne through the electrolysis of radium chloride in 1910, and soon afterwards the metal started being produced on larger scales in Austria, the United States, and Belgium. However, the amount of radium produced globally has always been small in comparison to other elements, and by the 2010s, annual production of radium, mainly via extraction from spent nuclear fuel, was less than 100 grams.

View the full Wikipedia page for Radium
↑ Return to Menu

Fluorescent in the context of Hoechst stain

Hoechst stains are part of a family of blue fluorescent dyes used to stain DNA. These bis-benzimides were originally developed by Hoechst AG, which numbered all their compounds so that the dye Hoechst 33342 is the 33,342nd compound made by the company. There are three related Hoechst stains: Hoechst 33258, Hoechst 33342, and Hoechst 34580. The dyes Hoechst 33258 and Hoechst 33342 are the ones most commonly used and they have similar excitationemission spectra.

View the full Wikipedia page for Hoechst stain
↑ Return to Menu

Fluorescent in the context of Fluorescein

Fluorescein is an organic compound and dye based on the xanthene tricyclic structural motif, formally belonging to triarylmethine dyes family. It is available as a dark orange/red powder slightly soluble in water and alcohol. It is used as a fluorescent tracer in many applications.

The color of its aqueous solutions is green by reflection and orange by transmission (its spectral properties are dependent on pH of the solution), as can be noticed in bubble levels, for example, in which fluorescein is added as a colorant to the alcohol filling the tube in order to increase the visibility of the air bubble contained within. More concentrated solutions of fluorescein can even appear red (because under these conditions nearly all incident emission is re-absorbed by the solution).

View the full Wikipedia page for Fluorescein
↑ Return to Menu

Fluorescent in the context of Electronic sign

Electronic signage (also called electronic signs or electronic displays) are illuminant advertising media in the signage industry. Major electronic signage include fluorescent signs, HID (high intensity displays), incandescent signs, LED signs, and neon signs. Besides, LED signs and HID are so-called digital signage.

View the full Wikipedia page for Electronic sign
↑ Return to Menu

Fluorescent in the context of Banknotes of Denmark, 1997 series

The 1997 series of Danish Banknotes are part of the physical form of Denmark's currency, the Danish Krone (kr.), issued by Danmarks Nationalbank. The 1997 series commenced in March 1997 and has since been replaced by the 2009 series.

The series was introduced gradually between 1997 and 1999. Its issue began on 10 March 1997 with the debut of the 200 kr. denomination, issued to bridge the gap between the 100 kr. and 500 kr. denominations. Between 2002 and 2005 the security features of the notes were improved to include holograms and fluorescent elements. In 2006, the national bank began designing new banknotes to replace this series. It officially began to be phased out with the issuance of the new 50 kr. banknote on 11 August 2009.

View the full Wikipedia page for Banknotes of Denmark, 1997 series
↑ Return to Menu

Fluorescent in the context of Eosin

Eosin is the name of several fluorescent acidic compounds which bind to and form salts with basic, or eosinophilic, compounds like proteins containing basic amino acid residues such as histidine, arginine and lysine, and stains them dark red or pink as a result of the actions of bromine on eosin. In addition to staining proteins in the cytoplasm, it can be used to stain collagen and muscle fibers for examination under the microscope. Structures that stain readily with eosin are termed eosinophilic. In the field of histology, Eosin Y is the form of eosin used most often as a histologic stain.

View the full Wikipedia page for Eosin
↑ Return to Menu

Fluorescent in the context of Zincite

Zincite is the mineral form of zinc oxide (ZnO). Its crystal form is rare in nature; a notable exception to this is at the Franklin and Sterling Hill Mines in New Jersey, an area also famed for its many fluorescent minerals. It has a hexagonal crystal structure and a color that depends on the presence of impurities. The zincite found at the Franklin Furnace is red-colored, mostly due to iron and manganese dopants, and associated with willemite and franklinite.

Zincite crystals can be grown artificially, and synthetic zincite crystals are available as a by-product of zinc smelting. Synthetic crystals can be colorless or can range in color from dark red, orange, or yellow to light green.

View the full Wikipedia page for Zincite
↑ Return to Menu