Eosinophilic in the context of "Eosin"

Play Trivia Questions online!

or

Skip to study material about Eosinophilic in the context of "Eosin"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Eosinophilic in the context of Eosin

Eosin is the name of several fluorescent acidic compounds which bind to and form salts with basic, or eosinophilic, compounds like proteins containing basic amino acid residues such as histidine, arginine and lysine, and stains them dark red or pink as a result of the actions of bromine on eosin. In addition to staining proteins in the cytoplasm, it can be used to stain collagen and muscle fibers for examination under the microscope. Structures that stain readily with eosin are termed eosinophilic. In the field of histology, Eosin Y is the form of eosin used most often as a histologic stain.

↓ Explore More Topics
In this Dossier

Eosinophilic in the context of Lewy bodies

Lewy bodies are inclusion bodies – abnormal aggregations of protein – that develop inside neurons affected by Parkinson's disease, the Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies (DLB)), and in several other disorders such as multiple system atrophy. The defining proteinaceous component of Lewy bodies is alpha-synuclein (α-synuclein), which aggregates to form Lewy bodies within neuronal cell bodies, and Lewy neurites in neuronal processes (axons or dendrites). In some disorders, alpha-synuclein also forms aggregates in glial cells that are referred to as 'glial cytoplasmic inclusions'; together, diseases involving Lewy bodies, Lewy neurites and glial cytoplasmic inclusions are called 'synucleinopathies'.

Lewy bodies appear as spherical masses in the neuronal cytoplasm that can displace other cellular components such as the nucleus and neuromelanin. A given neuron may contain one or more Lewy bodies. There are two main kinds of Lewy bodies – classical (brainstem-type) and cortical-type. Classical Lewy bodies occur most commonly in pigmented neurons of the brainstem, such as the substantia nigra and locus coeruleus, although they are not restricted to pigmented neurons. They are strongly eosinophilic structures ranging from 8-30 microns in diameter, and when viewed with a light microscope they are seen to consist of a dense core that is often surrounded by a pale shell. Electron microscopic analyses found that the core consists of a compact mass of haphazard filaments and various particles surrounded by a diffuse corona of radiating filaments. In contrast, cortical-type Lewy bodies are smaller, only faintly eosinophilic, and devoid of a surrounding halo with radial filaments. Cortical-type Lewy bodies occur in multiple regions of the cortex and in the amygdala. Cortical Lewy bodies are a distinguishing feature of dementia with Lewy bodies, but they may occasionally be seen in ballooned neurons characteristic of behavioural variant frontotemporal dementia and corticobasal degeneration, as well as in patients with other tauopathies.

↑ Return to Menu

Eosinophilic in the context of Type I collagen

Type I collagen is the most abundant collagen of the human body, consisting of around 90% of the body's total collagen in vertebrates. Due to this, it is also the most abundant protein type found in all vertebrates. Type I forms large, eosinophilic fibers known as collagen fibers, which make up most of the rope-like dense connective tissue in the body.

Collagen I itself is created by the combination of both a proalpha1 and a proalpha2 chain created by the COL1alpha1 and COL1alpha2 genes respectively. The Col I gene itself takes up a triple-helical conformation due to its Glycine-X-Y structure, x and y being any type of amino acid. Collagen can also be found in two different isoforms, either as a homotrimer or a heterotrimer, both of which can be found during different periods of development. Heterotrimers, in particular, play an important role in wound healing, and are the dominant isoform found in the body.

↑ Return to Menu

Eosinophilic in the context of Eosinophil granulocyte

Eosinophils, sometimes called eosinophiles or, less commonly, acidophils, are a variety of white blood cells and one of the immune system components responsible for combating multicellular parasites and certain infections in vertebrates. Along with mast cells and basophils, they also control mechanisms associated with allergy and asthma. They are granulocytes that develop during hematopoiesis in the bone marrow before migrating into blood, after which they are terminally differentiated and do not multiply.

These cells are eosinophilic or "acid-loving" due to their large acidophilic cytoplasmic granules, which show their affinity for acids by their affinity to coal tar dyes: Normally transparent, it is this affinity that causes them to appear brick-red after staining with eosin, a red dye, using the Romanowsky method. The staining is concentrated in small granules within the cellular cytoplasm, which contain many chemical mediators, such as eosinophil peroxidase, ribonuclease (RNase), deoxyribonucleases (DNase), lipase, plasminogen, and major basic protein. These mediators are released by a process called degranulation following activation of the eosinophil, and are toxic to both parasite and host tissues.

↑ Return to Menu