Flavin adenine dinucleotide in the context of "Adenine"

Play Trivia Questions online!

or

Skip to study material about Flavin adenine dinucleotide in the context of "Adenine"

Ad spacer

⭐ Core Definition: Flavin adenine dinucleotide

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

FAD exists in two common oxidation states, the fully oxidized form (FAD) and the fully reduced, dihydrogenated form, FADH2. Other oxidation states also exist, including the N-oxide and semiquinone states. FAD, in its fully oxidized form, accepts two electrons and two protons to become FADH2. The semiquinone (FADH) can be formed by either reduction of FAD or oxidation of FADH2 by accepting or donating one electron and one proton, respectively. Some proteins, however, generate and maintain a superoxidized form of the flavin cofactor, the flavin-N(5)-oxide.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Flavin adenine dinucleotide in the context of Adenine

Adenine (symbol A, or Ade) is a purine nucleotide base that is found in DNA, RNA, and ATP. Usually a white crystalline subtance. The shape of adenine is complementary and pairs to either thymine in DNA or uracil in RNA. In cells adenine, as an independent molecule, is rare. It is almost always covalently bound to become a part of a larger biomolecule.

Adenine has a central role in cellular respiration. It is part of adenosine triphosphate which provides the energy that drives and supports most activities in living cells, such as protein synthesis, chemical synthesis, muscle contraction, and nerve impulse propagation. In respiration it also participates as part of the cofactors nicotinamide adenine dinucleotide, flavin adenine dinucleotide, and Coenzyme A.

↓ Explore More Topics
In this Dossier

Flavin adenine dinucleotide in the context of Carbonhydrate

A carbohydrate (/ˌkɑːrbˈhdrt/) is a sugar (saccharide) or a sugar derivative. For the simplest carbohydrates, the carbon-to-hydrogen-to-oxygen atomic ratio is 1:2:1, i.e. they are often represented by the empirical formula C(H2O)n. Together with amino acids, fats, and nucleic acids, the carbohydrates are one of the major families of biomolecules.

Carbohydrates perform numerous roles in living organisms. Polysaccharides serve as an energy store (e.g., starch and glycogen) and as structural components (e.g., cellulose in plants and chitin in arthropods and fungi). The 5-carbon monosaccharide ribose is an important component of coenzymes (e.g., ATP, FAD and NAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.

↑ Return to Menu

Flavin adenine dinucleotide in the context of Carbohydrates

A carbohydrate (/ˌkɑːrbˈhdrt/) is a sugar (saccharide) or a sugar derivative. For the simplest carbohydrates, the carbon-to-hydrogen-to-oxygen atomic ratio is 1:2:1, i.e. they are often represented by the empirical formula (CH2O)n. Together with amino acids, fats, and nucleic acids, the carbohydrates are one of the major families of biomolecules.

Carbohydrates perform numerous roles in living organisms. Polysaccharides serve as an energy store (e.g., starch and glycogen) and as structural components (e.g., cellulose in plants and chitin in arthropods and fungi). The 5-carbon monosaccharide ribose is an important component of coenzymes (e.g., ATP, FAD and NAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.

↑ Return to Menu