Fission bomb in the context of "Fallout"

Play Trivia Questions online!

or

Skip to study material about Fission bomb in the context of "Fallout"

Ad spacer

⭐ Core Definition: Fission bomb

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either nuclear fission (fission or atomic bomb) or a combination of fission and nuclear fusion reactions (thermonuclear weapon), producing a nuclear explosion. Both bomb types release large quantities of energy from relatively small amounts of matter.

Nuclear weapons have had yields between 10 tons (the W54) and 50 megatons for the Tsar Bomba (see TNT equivalent). Yields in the low kilotons can devastate cities. A thermonuclear weapon weighing as little as 600 pounds (270 kg) can release energy equal to more than 1.2 megatons of TNT (5.0 PJ). Apart from the blast, effects of nuclear weapons include extreme heat and ionizing radiation, firestorms, radioactive nuclear fallout, an electromagnetic pulse, and a radar blackout.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Fission bomb in the context of Thermonuclear weapon

A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon, utilizing nuclear fusion. The most destructive weapons ever created, their yields typically exceed first-generation nuclear weapons by twenty times, with far lower mass and volume requirements. Characteristics of fusion reactions can make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material. Its multi-stage design is distinct from the usage of fusion in simpler boosted fission weapons. The first full-scale thermonuclear test (Ivy Mike) was carried out by the United States in 1952, and the concept has since been employed by at least the five NPT-recognized nuclear-weapon states: the United States, Russia, the United Kingdom, China, and France.

The design of all thermonuclear weapons is believed to be the Teller–Ulam configuration. This relies on radiation implosion, in which X-rays from detonation of the primary stage, a fission bomb, are channelled to compress a separate fusion secondary stage containing thermonuclear fuel, primarily lithium-6 deuteride. During detonation, neutrons convert lithium-6 to helium-4 plus tritium. The heavy isotopes of hydrogen, deuterium and tritium, then undergo a reaction that releases energy and neutrons. For this reason, thermonuclear weapons are often colloquially called hydrogen bombs or H-bombs.

↑ Return to Menu

Fission bomb in the context of Nuclear fallout

Nuclear fallout is residual radioisotope material that is created by the reactions producing a nuclear explosion or nuclear accident. In explosions, it is initially present in the radioactive cloud created by the explosion, and "falls out" of the cloud as it is moved by the atmosphere in the minutes, hours, and days after the explosion. The amount of fallout and its distribution is dependent on several factors, including the overall yield of the weapon, the fission yield of the weapon, the height of burst of the weapon, and meteorological conditions.

Fission weapons and many thermonuclear weapons use a large mass of fissionable fuel (such as uranium or plutonium), so their fallout is primarily fission products, and some unfissioned fuel. Cleaner thermonuclear weapons primarily produce fallout via neutron activation. Salted bombs, not widely developed, are tailored to produce and disperse specific radioisotopes selected for their half-life and radiation type.

↑ Return to Menu

Fission bomb in the context of Dirty bomb

A dirty bomb or radiological dispersal device is a radiological weapon that combines radioactive material with conventional explosives. The purpose of the weapon is to contaminate the area around the dispersal agent/conventional explosion with radioactive material, serving primarily as an area denial device against civilians. It is not to be confused with a nuclear explosion, such as a fission bomb, which produces blast effects far in excess of what is achievable by the use of conventional explosives. Unlike the rain of radioactive material from a typical fission bomb, a dirty bomb's radiation can be dispersed only within a few hundred meters or a few miles of the explosion.

Dirty bombs have never been used, only tested. They are designed to disperse radioactive material over a certain area. They act through the effects of radioactive contamination on the environment and related health effects of radiation poisoning in the affected populations. The containment and decontamination of victims, as well as decontamination of the affected area require considerable time and expenses, rendering areas partly unusable and causing economic damage. Dirty bombs might be used to create mass panic as a weapon of terror.

↑ Return to Menu