Firestorm in the context of "Fission bomb"

Play Trivia Questions online!

or

Skip to study material about Firestorm in the context of "Fission bomb"

Ad spacer

⭐ Core Definition: Firestorm

A firestorm is a conflagration which attains such intensity that it creates and sustains its own wind system. It is most commonly a natural phenomenon, created during some of the largest bushfires and wildfires. Although the term has been used to describe certain large fires, the phenomenon's determining characteristic is a fire with its own storm-force winds from every point of the compass towards the storm's center, where the air is heated and then ascends.

The Black Saturday bushfires, the 2021 British Columbia wildfires, and the Great Peshtigo Fire are possible examples of forest fires with some portion of combustion due to a firestorm, as is the Great Hinckley Fire. Firestorms have also occurred in cities, usually due to targeted explosives, such as in the aerial firebombings of London, Hamburg, Dresden, and Tokyo, and the atomic bombing of Hiroshima.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Firestorm in the context of Nuclear weapon

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either nuclear fission (fission or atomic bomb) or a combination of fission and nuclear fusion reactions (thermonuclear weapon), producing a nuclear explosion. Both bomb types release large quantities of energy from relatively small amounts of matter.

Nuclear weapons have had yields between 10 tons (the W54) and 50 megatons for the Tsar Bomba (see TNT equivalent). Yields in the low kilotons can devastate cities. A thermonuclear weapon weighing as little as 600 pounds (270 kg) can release energy equal to more than 1.2 megatons of TNT (5.0 PJ). Apart from the blast, effects of nuclear weapons include extreme heat and ionizing radiation, firestorms, radioactive nuclear fallout, an electromagnetic pulse, and a radar blackout.

↑ Return to Menu

Firestorm in the context of The Blitz

The Blitz (English: 'flash') was a bombing campaign by Nazi Germany and Fascist Italy against the United Kingdom during the Second World War. It lasted for eight months, from 7 September, 1940 to 11 May, 1941. The name is a shortened form of Blitzkrieg, a term used in the popular press to describe a German style of surprise attack used during the war.

Towards the end of the Battle of Britain in 1940, daylight air superiority over the United Kingdom was contested between the Luftwaffe and the Royal Air Force. Germany began conducting mass air attacks against British cities, beginning with London, in an attempt to draw the RAF Fighter Command into a battle of annihilation. Adolf Hitler and Reichsmarschall Hermann Göring, commander-in-chief of the Luftwaffe, ordered the new policy on 6 September 1940. From 7 September 1940, London was systematically bombed by the Luftwaffe for 56 of the following 57 days and nights. The attacks included a large daylight attack against London on 15 September, a large raid on 29 December 1940 against London resulting in a firestorm known as the Second Great Fire of London, and a large raid on the night of 10–11 May 1941.

↑ Return to Menu

Firestorm in the context of Natural disaster

A natural disaster is the very harmful impact on a society or community brought by natural phenomenon or hazard. Some examples of natural hazards include avalanches, droughts, earthquakes, floods, heat waves, landslides - including submarine landslides, tropical cyclones, volcanic activity and wildfires. Additional natural hazards include blizzards, dust storms, firestorms, hails, ice storms, sinkholes, thunderstorms, tornadoes and tsunamis.

A natural disaster can cause loss of life or damage property. It typically causes economic damage. How bad the damage is depends on how well people are prepared for disasters and how strong the buildings, roads, and other structures are.

↑ Return to Menu

Firestorm in the context of Asteroid impact avoidance

Asteroid impact avoidance encompasses the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs would cause, depending on its impact location, massive tsunamis or multiple firestorms, and an impact winter caused by the sunlight-blocking effect of large quantities of pulverized rock dust and other debris placed into the stratosphere. A collision 66 million years ago between the Earth and an object approximately 10 kilometers (6 miles) wide is thought to have produced the Chicxulub crater and triggered the Cretaceous–Paleogene extinction event that is understood by the scientific community to have caused the extinction of all non-avian dinosaurs.

While the chances of a major collision are low in the near term, it is a near-certainty that one will happen eventually unless defensive measures are taken. Astronomical events—such as the Shoemaker-Levy 9 impacts on Jupiter and the 2013 Chelyabinsk meteor, along with the growing number of near-Earth objects discovered and catalogued on the Sentry Risk Table—have drawn renewed attention to such threats. The popularity of the 2021 movie Don't Look Up helped to raise awareness of the possibility of avoiding NEOs. Awareness of the threat has grown rapidly during the past few decades, but much more needs to be accomplished before the human population can feel adequately protected from a potentially catastrophic asteroid impact.

↑ Return to Menu

Firestorm in the context of Nuclear winter

Nuclear winter is a severe and prolonged global climatic cooling effect that is hypothesized to occur after widespread urban firestorms following a large-scale nuclear war. The hypothesis is based on the fact that such fires can inject soot into the stratosphere, where it can block some direct sunlight from reaching the surface of the Earth. It is speculated that the resulting cooling, typically lasting a decade, would lead to widespread crop failure, a global nuclear famine, and an animal mass extinction event.

Climate researchers study nuclear winter via computer models and scenarios. Results are highly dependent on nuclear yields, weather and how many cities are targeted, their flammable material content, and the firestorms' atmospheric environments, convections, and durations. Firestorm case studies include the World War II bombings of Hiroshima, Tokyo, Hamburg, Dresden, and London, and modern observations from large-area wildfires such as the 2021 British Columbia wildfires.

↑ Return to Menu

Firestorm in the context of Conflagration

A conflagration is a particularly large and destructive fire. In the built environment, this may describe a fire that spreads via structure to structure ignition due to radiant or convective heat, or ember transmission. Conflagrations often damage human life, animal life, health, and/or property. A conflagration can begin accidentally or be intentionally created (arson). A very large fire can produce a firestorm, in which the central column of rising heated air induces strong inward winds, which supply oxygen to the fire. Conflagrations can cause casualties including deaths or injuries from burns, collapse of structures and attempts to escape, and smoke inhalation.

Firefighting is the practice of extinguishing a conflagration, protecting life and property and minimizing damage and injury. One of the goals of fire prevention is to avoid conflagrations. When a conflagration is extinguished, there is often a fire investigation to determine the cause of the fire.

↑ Return to Menu