Firefly luciferin in the context of "Bioluminescence"

Play Trivia Questions online!

or

Skip to study material about Firefly luciferin in the context of "Bioluminescence"

Ad spacer

⭐ Core Definition: Firefly luciferin

Firefly luciferin (also known as beetle luciferin) is the luciferin, precursor of the light-emitting compound, used for the firefly (Lampyridae), railroad worm (Phengodidae), starworm (Rhagophthalmidae), and click-beetle (Pyrophorini) bioluminescent systems. It is the substrate of firefly luciferase (EC 1.13.12.7), which is responsible for the characteristic light emission of many firefly and other insect species in the visible spectra ranging from 530 until 630 nm.

As with other luciferins, oxygen is essential for the luminescence mechanism, which involves the decomposition of a cyclic peroxide to produce excited-state molecules capable of emitting light as they relax to the ground state. Additionally, it has been found that adenosine triphosphate (ATP) and magnesium are required for light emission.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Firefly luciferin in the context of Bioluminescence

Bioluminescence is the emission of light during a chemiluminescence reaction by living organisms. Bioluminescence occurs in multifarious organisms ranging from marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, dinoflagellates and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.

In most cases, the principal chemical reaction in bioluminescence involves the reaction of a substrate called luciferin and an enzyme, called luciferase. Because these are generic names, luciferins and luciferases are often distinguished by the species or group, e.g. firefly luciferin or cypridina luciferin. In all characterized cases, the enzyme catalyzes the oxidation of the luciferin resulting in excited state oxyluciferin, which is the light emitter of the reaction. Upon their decay to the ground state they emit visible light. In all known cases of bioluminescence the production of the excited state molecules involves the decomposition of organic peroxides.

↓ Explore More Topics
In this Dossier