Finite decimal in the context of Non-negative


Finite decimal in the context of Non-negative

Finite decimal Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Finite decimal in the context of "Non-negative"


⭐ Core Definition: Finite decimal

A decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here . is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9.

Commonly, if The sequence of the —the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0. If all are 0, the separator is also omitted, resulting in a finite sequence of digits, which represents a natural number.

↓ Menu
HINT:

In this Dossier

Finite decimal in the context of Boltzmann constant

The Boltzmann constant (kB or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the molar gas constant, in Planck's law of black-body radiation and Boltzmann's entropy formula, and is used in calculating thermal noise in resistors. The Boltzmann constant has dimensions of energy divided by temperature, the same as entropy and heat capacity. It is named after the Austrian scientist Ludwig Boltzmann.

As part of the 2019 revision of the SI, the Boltzmann constant is one of the seven "defining constants" that have been defined so as to have exact finite decimal values in SI units. They are used in various combinations to define the seven SI base units. The Boltzmann constant is defined to be exactly 1.380649×10 joules per kelvin, with the effect of defining the SI unit kelvin.

View the full Wikipedia page for Boltzmann constant
↑ Return to Menu