The mole (symbol mol) is a unit of measurement, the base unit in the International System of Units (SI) for amount of substance, an SI base quantity proportional to the number of elementary entities of a substance. One mole is an aggregate of exactly 6.02214076×10 elementary entities (approximately 602 sextillion or 602 billion times a trillion), which can be atoms, molecules, ions, ion pairs, or other particles. The number of particles in a mole is the Avogadro number (symbol N0) and the numerical value of the Avogadro constant (symbol NA) has units of mol. The relationship between the mole, Avogadro number, and Avogadro constant can be expressed in the following equation:
The current SI value of the mole is based on the historical definition of the mole as the amount of substance that corresponds to the number of atoms in 12 grams of C, which made the molar mass of a compound in grams per mole, numerically equal to the average molecular mass or formula mass of the compound expressed in daltons. With the 2019 revision of the SI, the numerical equivalence is now only approximate, but may still be assumed with high accuracy.
Conceptually, the mole is similar to the concept of dozen or other convenient grouping used to discuss collections of identical objects. Because laboratory-scale objects contain a vast number of tiny atoms, the number of entities in the grouping must be huge to be useful for work.