Fibroblasts in the context of "Meninges"

Play Trivia Questions online!

or

Skip to study material about Fibroblasts in the context of "Meninges"

Ad spacer

⭐ Core Definition: Fibroblasts

A fibroblast is a type of biological cell typically with a spindle shape that synthesizes the extracellular matrix and collagen, produces the structural framework (stroma) for animal tissues, and plays a critical role in wound healing. Fibroblasts are the most common cells of connective tissue in animals.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Fibroblasts in the context of Meninges

In anatomy, the meninges (/məˈnɪnz/; sg. meninx /ˈmnɪŋks, ˈmɛnɪŋks/; from Ancient Greek μῆνινξ (mêninx) 'membrane') are protective membranes that cover the brain and spinal cord. In mammals, three meninges have been clearly identified: the dura mater, the arachnoid mater, and the pia mater. Each layer has its own molecularly distinct type of fibroblasts. The meninges act as a physical and immunological protective barrier for the brain and spinal cord, shielding the central nervous system (CNS) from injury. They anchor and support the tissues of the CNS, and provide containment for cerebrospinal fluid (CSF) and the arteries and veins that supply blood to the brain and spinal cord.

The dura mater surrounds the arachnoid mater and supports the dural sinuses, which carry blood from the brain to the heart. The area between the arachnoid and pia mater is known as the subarachnoid space. It contains cerebrospinal fluid. The arachnoid and pia maters produce prostaglandin D2 synthase, a major cerebrospinal fluid protein. The arachnoid mater provides a restrictive permeability barrier between the cerebrospinal fluid in the subarachnoid space and the circulation of blood in the dura. The pia mater is a thin sheet of connective tissue that interfaces with the glial limitans superficialis.

↓ Explore More Topics
In this Dossier

Fibroblasts in the context of Perichondrium

The perichondrium (from Greek περί, peri, 'around' and χόνδρος, chondros, 'cartilage') is a layer of dense irregular connective tissue that surrounds the cartilage of developing bone. It consists of two separate layers: an outer fibrous layer and inner chondrogenic layer. The fibrous layer contains fibroblasts, which produce collagenous fibres. The chondrogenic layer remains undifferentiated and can form chondroblasts. Perichondrium can be found around the perimeter of elastic cartilage and hyaline cartilage.

Perichondrium is a type of irregular collagenous ordinary connective tissue, and also functions in the growth and repair of cartilage. Perichondrium contains type I collagen and type XII collagen.

↑ Return to Menu

Fibroblasts in the context of Ground substance

Ground substance is an amorphous gel-like substance in the extracellular space of animals that contains all components of the extracellular matrix (ECM) except for fibrous materials such as collagen and elastin. Ground substance is active in the development, movement, and proliferation of tissues, as well as their metabolism. Additionally, cells use it for support, water storage, binding, and a medium for intercellular exchange (especially between blood cells and other types of cells). Ground substance provides lubrication for collagen fibers.

The components of the ground substance vary depending on the tissue. Ground substance is primarily composed of water and large organic molecules, such as glycosaminoglycans (GAGs), proteoglycans, and glycoproteins. GAGs are polysaccharides that trap water, giving the ground substance a gel-like texture. Important GAGs found in ground substance include hyaluronic acid, heparan sulfate, dermatan sulfate, and chondroitin sulfate. With the exception of hyaluronic acid, GAGs are bound to proteins called proteoglycans. Glycoproteins are proteins that attach components of the ground substance to one another and to the surfaces of cells. Components of the ground substance are secreted by fibroblasts. Usually it is not visible on slides, because it is lost during staining in the preparation process.

↑ Return to Menu

Fibroblasts in the context of Wharton's jelly

Wharton's jelly (Latin: substantia gelatinea funiculi umbilicalis) is a gelatinous substance within the umbilical cord, largely made up of mucopolysaccharides (hyaluronic acid and chondroitin sulfate). It acts as a mucous connective tissue containing some fibroblasts and macrophages, and is derived from extra-embryonic mesoderm of the connecting stalk.

↑ Return to Menu

Fibroblasts in the context of Stromal cell

Stromal cells, or mesenchymal stromal cells, are differentiating cells found in abundance within bone marrow but can also be seen all around the body. Stromal cells can become connective tissue cells of any organ, for example in the uterine mucosa (endometrium), prostate, bone marrow, lymph node and the ovary. They are cells that support the function of the parenchymal cells of that organ. The most common stromal cells include fibroblasts and pericytes. The term stromal comes from Latin stromat-, "bed covering", and Ancient Greek στρῶμα, strôma, "bed".

Stromal cells are an important part of the body's immune response and modulate inflammation through multiple pathways. They also aid in differentiation of hematopoietic cells and forming necessary blood elements. The interaction between stromal cells and tumor cells is known to play a major role in cancer growth and progression. In addition, by regulating local cytokine networks (e.g. M-CSF, LIF), bone marrow stromal cells have been described to be involved in human hematopoiesis and inflammatory processes.

↑ Return to Menu