Fatigue (material) in the context of "Turbine blade"

Play Trivia Questions online!

or

Skip to study material about Fatigue (material) in the context of "Turbine blade"

Ad spacer

⭐ Core Definition: Fatigue (material)

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. Most materials, such as composites, plastics and ceramics, seem to experience some sort of fatigue-related failure.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Fatigue (material) in the context of Turbine blade

A turbine blade is a radial aerofoil mounted in the rim of a turbine disc and which produces a tangential force which rotates a turbine rotor. Each turbine disc has many blades. As such they are used in gas turbine engines and steam turbines. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor. The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling that can be categorized as internal and external cooling, and thermal barrier coatings. Blade fatigue is a major source of failure in steam turbines and gas turbines. Fatigue is caused by the stress induced by vibration and resonance within the operating range of machinery. To protect blades from these high dynamic stresses, friction dampers are used.

Blades of wind turbines and water turbines are designed to operate in different conditions, which typically involve lower rotational speeds and temperatures.

↓ Explore More Topics
In this Dossier

Fatigue (material) in the context of Wear

Wear is the damaging, gradual removal or deformation of material at solid surfaces. Causes of wear can be mechanical (e.g., erosion) or chemical (e.g., corrosion). The study of wear and related processes is referred to as tribology.

Wear in machine elements, together with other processes such as fatigue and creep, causes functional surfaces to degrade, eventually leading to material failure or loss of functionality. Thus, wear has large economic relevance as first outlined in the Jost Report. Abrasive wear alone has been estimated to cost 1–4% of the gross national product of industrialized nations.

↑ Return to Menu

Fatigue (material) in the context of Self-healing material

Self-healing materials are artificial or synthetically created substances that have the built-in ability to automatically repair damages to themselves without any external diagnosis of the problem or human intervention. Generally, materials will degrade over time due to fatigue, environmental conditions, or damage incurred during operation. Cracks and other types of damage on a microscopic level have been shown to change thermal, electrical, and acoustical properties of materials, and the propagation of cracks can lead to eventual failure of the material. In general, cracks are hard to detect at an early stage, and manual intervention is required for periodic inspections and repairs. In contrast, self-healing materials counter degradation through the initiation of a repair mechanism that responds to the micro-damage. Some self-healing materials are classed as smart structures, and can adapt to various environmental conditions according to their sensing and actuation properties.

Although the most common types of self-healing materials are polymers or elastomers, self-healing covers all classes of materials, including metals, ceramics, and cementitious materials. Healing mechanisms vary from an instrinsic repair of the material to the addition of a repair agent contained in a microscopic vessel. For a material to be strictly defined as autonomously self-healing, it is necessary that the healing process occurs without human intervention. Self-healing polymers may, however, activate in response to an external stimulus (light, temperature change, etc.) to initiate the healing processes.

↑ Return to Menu

Fatigue (material) in the context of Shipbreaking

Ship breaking (also known as ship recycling, ship demolition, ship scrapping, ship dismantling, or ship cracking) is a type of ship disposal involving the breaking up of ships either as a source of parts, which can be sold for re-use, or for the extraction of raw materials, chiefly scrap. Modern ships have a lifespan of 25 to 30 years before corrosion, metal fatigue and a lack of parts render them uneconomical to operate. Ship-breaking allows the materials from the ship, especially steel, to be recycled and made into new products. This lowers the demand for mined iron ore and reduces energy use in the steelmaking process. Fixtures and other equipment on board the vessels can also be reused. While ship-breaking is sustainable, there are concerns about its use by poorer countries without stringent environmental legislation. It is also labour-intensive, and considered one of the world's most dangerous industries.

In 2012, roughly 1,250 ocean ships were broken down, and their average age was 26 years. In 2013, the world total of demolished ships amounted to 29,052,000 tonnes, 92% of which were demolished in Asia. As of January 2020, Alang Ship Breaking Yard in India has the largest global share at 30%, followed by Chittagong Ship Breaking Yard in Bangladesh and Gadani Ship Breaking Yard in Pakistan.

↑ Return to Menu

Fatigue (material) in the context of Fatigue testing

Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. Fatigue tests are used on a range of components from coupons through to full size test articles such as automobiles and aircraft.

Fatigue tests on coupons are typically conducted using servo hydraulic test machines which are capable of applying large variable amplitude cyclic loads. Constant amplitude testing can also be applied by simpler oscillating machines. The fatigue life of a coupon is the number of cycles it takes to break the coupon. This data can be used for creating stress-life or strain-life curves. The rate of crack growth in a coupon can also be measured, either during the test or afterward using fractography. Testing of coupons can also be carried out inside environmental chambers where the temperature, humidity and environment that may affect the rate of crack growth can be controlled.

↑ Return to Menu

Fatigue (material) in the context of Rotating spline

A spline is a ridge or tooth on a drive shaft that matches with a groove in a mating piece and transfers torque to it, maintaining the angular correspondence between them.

For instance, a gear mounted on a shaft might use a male spline on the shaft that matches the female spline on the gear. Adjacent images in the section below show a transmission input shaft with male splines and a clutch plate with mating female splines in the center hub, where the smooth tip of the axle would be supported in a pilot bearing in the flywheel (not pictured). An alternative to splines is a keyway and key, though splines provide a longer fatigue life, and can carry significantly greater torques for the size.

↑ Return to Menu

Fatigue (material) in the context of Northwest Airlines Flight 421

Northwest Orient Airlines Flight 421 was a domestic scheduled passenger flight from Chicago, Illinois, to Minneapolis, Minnesota, United States, that crashed on 29 August 1948. The Martin 2-0-2 aircraft, operated by Northwest Orient Airlines, suffered structural failure in its left wing and crashed approximately 4.1 miles (6.6 km) northwest of Winona, Minnesota, about 95 miles (153 km) southeast of Minneapolis. A Civil Aeronautics Board investigation determined that the crash was caused by fatigue cracks in the wings of the aircraft, and recommended lower speeds and frequent inspections of all Martin 2-0-2 aircraft. All 33 passengers and 4 crew members on board were killed. The crash was the first loss of a Martin 2-0-2, and remains the worst accident involving a Martin 2-0-2, as well as the worst aviation accident in Wisconsin.

↑ Return to Menu