Extra dimensions in the context of "Fuzzball (string theory)"


Extra dimensions in the context of "Fuzzball (string theory)"

Extra dimensions Study page number 1 of 1

Answer the Extra Dimensions Trivia Question!

or

Skip to study material about Extra dimensions in the context of "Fuzzball (string theory)"


⭐ Core Definition: Extra dimensions

In physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are:

↓ Menu
HINT:

👉 Extra dimensions in the context of Fuzzball (string theory)

Fuzzballs are hypothetical objects in superstring theory, intended to provide a fully quantum description of the black holes predicted by general relativity.

The fuzzball hypothesis dispenses with the singularity at the heart of a black hole by positing that the entire region within the black hole's event horizon is actually an extended object: a ball of strings, which are advanced as the ultimate building blocks of matter and light. Under string theory, strings are bundles of energy vibrating in complex ways in both the three familiar dimensions of space as well as in extra dimensions. Fuzzballs provide resolutions to two major open problems in black hole physics. First, they avoid the gravitational singularity that exists within the event horizon of a black hole. General relativity predicts that at the singularity, the curvature of spacetime becomes infinite, and it cannot determine the fate of matter and energy that falls into it. Physicists generally believe that the singularity is not a real phenomenon, and proposed theories of quantum gravity, such as superstring theory, are expected to explain its true nature. Second, they resolve the black hole information paradox: the quantum information of matter falling into a black hole is trapped behind the event horizon, and seems to disappear from the universe entirely when the black hole evaporates due to Hawking radiation. This would violate a fundamental law of quantum mechanics requiring that quantum information be conserved.

↓ Explore More Topics
In this Dossier