Experimental confirmation in the context of Skepticism


Experimental confirmation in the context of Skepticism

Experimental confirmation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Experimental confirmation in the context of "Skepticism"


⭐ Core Definition: Experimental confirmation

The scientific method is an empirical method for acquiring knowledge through careful observation, rigorous skepticism, hypothesis testing, and experimental validation. Developed from ancient and medieval practices, it acknowledges that cognitive assumptions can distort the interpretation of the observation. The scientific method has characterized science since at least the 17th century. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results.

Although procedures vary across fields, the underlying process is often similar. In more detail: the scientific method involves making conjectures (hypothetical explanations), predicting the logical consequences of hypothesis, then carrying out experiments or empirical observations based on those predictions. A hypothesis is a conjecture based on knowledge obtained while seeking answers to the question. Hypotheses can be very specific or broad but must be falsifiable, implying that it is possible to identify a possible outcome of an experiment or observation that conflicts with predictions deduced from the hypothesis; otherwise, the hypothesis cannot be meaningfully tested.

↓ Menu
HINT:

In this Dossier

Experimental confirmation in the context of Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physical phenomena unexplained and so falls short of being a complete theory of fundamental interactions. For example, it does not fully explain why there is more matter than anti-matter, incorporate the full theory of gravitation as described by general relativity, or account for the universe's accelerating expansion as possibly described by dark energy. The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations and their non-zero masses.

View the full Wikipedia page for Standard Model
↑ Return to Menu